A discontinuous Galerkin method for wave propagation in coupled elastic-acoustic media

Kaihang Guo¹, Jesse Chan¹, Sebastian Acosta²

 $^1{\rm Department}$ of Computational and Applied Mathematics, Rice University $^2{\rm Department}$ of Pediatrics-Cardiology, Baylor College of Medicine

March 1-2, 2019

Motivation

In marine seismology, waves propagate through different subsurface layers, resulting in models with fluid-solid interfaces.

Marine seismic exploration

https://www.capean dislands.org/post/dynamite-going-your-bedroom-more-seismic-surveys-may-be-coming-at lantic-coast#stream/0

Motivation

In photoacoustic tomography (PAT), researchers want to locate brain tumors through reconstruction of initial pressure condition.

FEM mesh of an adult head

http://www.childbrain.eu/childbrain/keski-oikea/esrprojects/esr-13-development-of-new-finite-element-approaches-for-child-brain-research-and-comparison-to-standard-forward-modelling-methods-for-eeg-and-meg-source-analysis

Extension to curvilinear meshes

(b) Scholte wave (curvilinear)

4

Wave propagation in different media

5

Photoacoustic tomography (PAT)

Summary

- We derive a numerical flux across elastic-acoustic interfaces with a very simple form.
- The resulting DG method is efficient, provably energy stable, and high order accurate for arbitrary heterogeneous and anisotropic media.
- The proposed formulation can be applied on unstructured tetrahedral meshes and general curvilinear meshes.