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Motivation

In marine seismology, waves propagate through different subsurface
layers, resulting in models with fluid-solid interfaces.

Marine seismic exploration

https://www.capeandislands.org/post/dynamite-going-your-bedroom-more-seismic-surveys-may-be-coming-atlantic-
coast#stream/0
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Motivation

In photoacoustic tomography (PAT), researchers want to locate brain
tumors through reconstruction of initial pressure condition.

FEM mesh of an adult head

http://www.childbrain.eu/childbrain/keski-oikea/esrprojects/esr-13-development-of-new-finite-element-approaches-for-
child-brain-research-and-comparison-to-standard-forward-modelling-methods-for-eeg-and-meg-source-analysis
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Outline

• Elastic-acoustic coupled DG

• Numerical experiments

• Application examples
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Finite element methods

Finite element methods (FEM):

• Unstructured meshes.

• Continuous piecewise polynomial
approximation.

• Continuous PDE (example: advection)

∂u

∂t
=
∂u

∂x

• FEM weak form over domain Ω∫
Ω

∂u

∂t
φ =

∫
Ω

∂u

∂x
φ, u, φ ∈ Vh
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Finite element methods

Finite element methods (FEM):

• Unstructured meshes.

• Continuous piecewise polynomial
approximation.

FEM yields system of ODEs with
global mass matrix MΩ, discretization matrix A.

MΩ
du

dt
= Au.

FEM mass matrix is globally coupled.
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Basics of discontinuous Galerkin methods

Discontinuous Galerkin (DG) methods:

• Unstructured meshes.

• Weak continuity across faces.

• Continuous PDE (example: advection)

∂u

∂t
=
∂ f (u)

∂x
, f (u) = u.

• Local DG form with numerical flux f ∗: find u ∈ PN
(
Dk
)

such that∫
Dk

∂u

∂t
φ =

∫
Dk

∂ f (u)

∂x
φ+

∫
∂Dk

n · (f ∗ − f (u))φ, ∀φ ∈ PN
(
Dk
)
.
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Basics of discontinuous Galerkin methods

Discontinuous Galerkin (DG) methods:

• Unstructured meshes.

• Weak continuity across faces.

DG in space yields system of ODEs

MΩ
du

dt
= Au.

DG mass matrix decouples across elements,
inter-element coupling only through A.
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High order DG methods

• Unstructured (tetrahedral)
meshes for geometric flexibility.

• High order: low numerical
dissipation and dispersion.

• High order approximations:
more accurate per unknown.

• Explicit time stepping: high
performance on many-core.

Figure courtesy of Axel Modave.
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High order DG methods

• Unstructured (tetrahedral)
meshes for geometric flexibility.

• High order: low numerical
dissipation and dispersion.

• High order approximations:
more accurate per unknown.

• Explicit time stepping: high
performance on many-core. -1 -0.5 0 0.5 1
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High order DG methods

• Unstructured (tetrahedral)
meshes for geometric flexibility.

• High order: low numerical
dissipation and dispersion.

• High order approximations:
more accurate per unknown.

• Explicit time stepping: high
performance on many-core. -1 -0.5 0 0.5 1
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Coarse quadratic approximation.
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High order DG methods

• Unstructured (tetrahedral)
meshes for geometric flexibility.

• High order: low numerical
dissipation and dispersion.

• High order approximations:
more accurate per unknown.

• Explicit time stepping: high
performance on many-core.

Max errors vs. dofs.
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High order DG methods

• Unstructured (tetrahedral)
meshes for geometric flexibility.

• High order: low numerical
dissipation and dispersion.

• High order approximations:
more accurate per unknown.

• Explicit time stepping: high
performance on many-core.

Graphics processing units (GPU).
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Previous work

• Wilcox et al. constructed a DG-SEM scheme on quadrilateral and
hexahedral meshes using Gauss-Lobatto quadrature by deriving an
upwind numerical flux from the exact Riemann problem.1

• Zhan et al. extended this approach to anisotropic elastic-acoustic
media by solving a simplified Riemann problem on each inter-element
interface.2

• Ye et al. circumvent the Riemann problem altogether by using a DG
formulation with a dissipative upwind-like “penalty” flux.3

Wilcox, Stadler, Burstedde, Ghattas. 2010. A high-order discontinuous Galerkin method for wave propagation through
coupled elastic–acoustic media.

Zhan, Ren, Zhuang, Sun, Liu. 2018. An exact Riemann solver for wave propagation in arbitrary anisotropic elastic media
with fluid coupling.

Ye, de Hoop, Petrovitch, Pyrak-Nolte, Wilcox. 2016. A discontinuous Galerkin method with a modified penalty flux for
the propagation and scattering of acousto-elastic waves.
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First-order wave equations

• Acoustic wave equation:

1

c2

∂p

∂t
= ∇ · u, ∂u

∂t
= ∇p (fluid)

• Elastic wave equation:

ρ
∂v
∂t

=
d∑

i=1

AT
i

∂σ

∂xi
, C−1∂σ

∂t
=

d∑
i=1

Ai
∂v
∂xi

(solid)

• Numerical scheme: high order, explicit time-stepping, parallelizable
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Strong DG formulation

• Pure acoustic domain:(
1

c2

∂p

∂t
, q

)
L2(Dk )

= (∇ · u, q)L2(Dk ) +
∑

f∈∂Dk∩Γaa

〈
1

2
nT [[u]] +

τp

2
[[p]], q

〉
L2(f )(

∂u
∂t
,w
)

L2(Dk )

= (∇p,w)L2(Dk ) +
∑

f∈∂Dk∩Γaa

〈
1

2
nT [[p]] +

τu

2
[[u]],w

〉
L2(f )

• Pure elastic domain:

(
ρ
∂v
∂t
,w
)

L2(Dk )

=

(
d∑

i=1

AT
i

∂σ

∂xi
,w

)
L2(Dk )

+
∑

f∈∂Dk∩Γee

〈
1

2
AT

n [[σ]] +
τv

2
AT

n An[[v ]],w
〉

L2(f )(
C−1 ∂σ

∂t
, q
)

L2(Dk )

=

(
d∑

i=1

Ai
∂v
∂xi

, q

)
L2(Dk )

+
∑

f∈∂Dk∩Γee

〈
1

2
An[[v ]] +

τσ

2
AnAT

n [[σ]], q
〉

L2(f )

Γaa : acoustic-acoustic interfaces Γee : elastic-elastic interfaces
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Weight-adjusted DG: stable, accurate, non-invasive

• High order wavespeeds: weighted mass matrices. Stable, but requires
pre-computation/storage of inverses or factorizations!

M1/c2
dp
dt

= AhU ,
(
M1/c2

)
ij

=

∫
Dk

1

c2(x)
φj(x)φi (x).

• Weight-adjusted DG (WADG): energy stable approx. of M1/c2

M1/c2 ≈M (Mc2)−1 M ⇒ dp
dt

= M−1 (Mc2) M−1AhU

• Low storage matrix-free application of M−1Mc2 using
quadrature-based interpolation and L2 projection matrices Vq,Pq.

(M)−1 Mc2RHS = M−1V T
q W︸ ︷︷ ︸

Pq

diag
(
c2
)
Vq (RHS) .

Chan, Hewett, Warburton. 2016. Weight-adjusted DG methods: wave propagation in heterogeneous media.
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Energy stable elastic-acoustic coupling

• Typical DG approach: upwind flux (exact Riemann solver).

• Riemann problem is expensive and difficult to solve exactly in
heterogeneous and anisotropic media.

• The numerical flux should be consistent with continuity conditions on
elastic-acoustic interfaces

u · n = v · n, AT
n σ = pn.

• Penalty term with parameter τ ≥ 0 adds upwind-like dissipation.

• Our goal is to find a numerical flux such that the DG scheme is
energy stable.
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Energy stable elastic-acoustic coupling
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Theoretical results

Theorem (Consistency)

The coupled discontinuous Galerkin scheme is consistent.

Theorem (Energy stability)

The coupled discontinuous Galerkin scheme is energy stable for
τu = τv ≥ 0, τp = τσ ≥ 0, in the sense that∑

Dk∈Ωe
h

∂

∂t

(
(ρv , v)L2(Dk ) +

(
C−1σ,σ

)
L2(Dk )

)
+
∑

Dk∈Ωa
h

∂

∂t

(( p

c2
, p
)
L2(Dk )

+ (u, u)L2(Dk )

)

=−
∑
f∈Γaa

∫
f

(
τp[[p]]2 + τu (n · [[u]])2

)
−
∑
f∈Γee

∫
f

(τu
2
|An[[v ]]|2 +

τp
2
|AT

n [[σ]]|2
)

−
∑

f∈Γea∪Γae

∫
f

(τu
2
|nT (u − v)|2 +

τp
2
|pn − AT

n σ|2
)
≤ 0,

where Ωa
h and Ωe

h denote the acoustic and elastic computational domain,
respectively.
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Spectra and choice of penalty parameter

Let L denote the matrix induced by the global semi-discrete DG
formulation, such that the time evolution of the global solution is governed
by

∂Q
∂t

= LQ

(a) τu = τp = 0 (b) τu = τp = 1
2

(c) τu = τp = 1

Figure: Spectra for N = 3 on a non-curved uniform mesh with h = 1/4. For all
cases, the largest real part of the spectra is O(10−14).
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Classical interface problems: Scholte wave
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Figure: Convergence of L2 errors for the Scholte wave solution
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Classical interface problems: Snell’s law
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Figure: Convergence of L2 errors for the Snell’s law solution
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Extension to curvilinear meshes

(a) Curvilinear mesh
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(b) Scholte wave (curvilinear)
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Extension to curvilinear meshes

(a) τu = τp = 0 (b) τu = τp = 1
2

(c) τu = τp = 1

Figure: Spectra of the discontinuous Galerkin discretization matrix for central and
penalty fluxes on a warped curvilinear mesh of degree N = 3. For all cases, the
largest real part of the spectra is O(10−14).
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Homogeneous anisotropic media

(a) T = 30 (b) T = 60

Figure: An example of wave propagation in homogeneous anisotropic-isotropic
acoustic-elastic media.

Komatitsch, Barnes, Tromp. 2000. Simulation of anisotropic wave propagation based upon a spectral element method.
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Heterogeneous anisotropic media

(a) T = 30 (b) T = 60

Figure: An example of wave propagation in heterogeneous anisotropic-isotropic
acoustic-elastic media.

Komatitsch, Barnes, Tromp. 2000. Simulation of anisotropic wave propagation based upon a spectral element method.
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Photoacoustic tomography (PAT)

(a) Mesh (b) Exact initial pressure
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Photoacoustic tomography (PAT)

(a) Reconstruction after 5 iterations (b) Purely acoustic reconstruction
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Photoacoustic tomography (PAT)

Iteration Fine Fine (acous) Coarse Coarse (acous)

1 0.140530 0.147435 0.140556 0.147103
2 0.094658 0.133881 0.094811 0.133508
3 0.075081 0.130397 0.075347 0.130010
4 0.065585 0.129331 0.065941 0.128939
5 0.060577 0.128973 0.060998 0.128577

Table: Relative L2 errors at each iteration

(a) Error after 1 iter (b) Error after 5 iter

Figure: Reconstruction results using fine mesh
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Summary and acknowledgements

• We derive a numerical flux across elastic-acoustic interfaces with a
very simple form.
• The proposed scheme can be applied on unstructured tetrahedral

meshes and general curvilinear meshes.
• The resulting DG method is efficient, provably energy stable, and high

order accurate for arbitrary heterogeneous and anisotropic media.

Thank you! Questions?

Guo, Acosta, Chan. 2019. A weight-adjusted DG method for wave propagation in coupled elastic-acoustic media.

Guo, Chan. 2018. Bernstein-Bezier weight-adjusted discontinuous Galerkin methods for wave propagation(JCP).

Chan, Hewett, Warburton. 2016. Weight-adjusted DG methods: wave propagation in heterogeneous media (SISC).

Chan. 2017. Weight-adjusted DG methods: matrix-valued weights and elastic wave prop. in heterogeneous media
(IJNME).

Chan, Warburton. 2015. GPU-accelerated Bernstein-Bezier discontinuous Galerkin methods for wave propagation (SISC).
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