
Weight-adjusted Bernstein-Bezier DG method for wave
propagation in heterogeneous media

Kaihang Guo, Jesse Chan

Department of Computational and Applied Mathematics
Rice University

North American High Order Methods Conference
June 2-5, 2019

1



First-order wave equations

• Acoustic wave equation:

1

c2

∂p

∂t
= ∇ · u, ∂u

∂t
= ∇p

• Elastic wave equation:

ρ
∂v
∂t

=
d∑

i=1

AT
i

∂σ

∂xi
, C−1∂σ

∂t
=

d∑

i=1

Ai
∂v
∂xi

• Numerical scheme: high order, explicit time-stepping, parallelizable

2



High order DG methods for wave propagation

• Unstructured (tetrahedral)
meshes for geometric flexibility.

• High order: low numerical
dissipation and dispersion.

• High order approximations:
more accurate per unknown.

• Explicit time stepping: high
performance on many-core.

Figure courtesy of Axel Modave.

3



High order DG methods for wave propagation

• Unstructured (tetrahedral)
meshes for geometric flexibility.

• High order: low numerical
dissipation and dispersion.

• High order approximations:
more accurate per unknown.

• Explicit time stepping: high
performance on many-core.

(a) Dissipative error

(b) Dispersive error

3



High order DG methods for wave propagation

• Unstructured (tetrahedral)
meshes for geometric flexibility.

• High order: low numerical
dissipation and dispersion.

• High order approximations:
more accurate per unknown.

• Explicit time stepping: high
performance on many-core.

Max errors vs. dofs.

3



High order DG methods for wave propagation

• Unstructured (tetrahedral)
meshes for geometric flexibility.

• High order: low numerical
dissipation and dispersion.

• High order approximations:
more accurate per unknown.

• Explicit time stepping: high
performance on many-core.

Graphics processing units (GPU).

3



Time-domain nodal DG methods

Assume u(x , t) =
∑

ujφj(x) on Dk

• Compute numerical flux at face
nodes (non-local).

• Compute RHS of (local) ODE.

• Evolve (local) solution using explicit
time integration (RK, AB, etc).

du

dt
= Dxu +

∑

faces

Lf (flux) . Mij =

∫

Dk

φj(x)φi (x)

Lf = M−1Mf .

4



Time-domain nodal DG methods

Assume u(x , t) =
∑

ujφj(x) on Dk

• Compute numerical flux at face
nodes (non-local).

• Compute RHS of (local) ODE.

• Evolve (local) solution using explicit
time integration (RK, AB, etc).

du

dt
= Dxu︸︷︷︸

Volume kernel

+
∑

faces

Lf (flux)

︸ ︷︷ ︸
Surface kernel

.
Mij =

∫

Dk

φj(x)φi (x)

Lf = M−1Mf .

4



Time-domain nodal DG methods

Assume u(x , t) =
∑

ujφj(x) on Dk

• Compute numerical flux at face
nodes (non-local).

• Compute RHS of (local) ODE.

• Evolve (local) solution using explicit
time integration (RK, AB, etc).

du

dt︸︷︷︸
Update kernel

= Dxu︸︷︷︸
Volume kernel

+
∑

faces

Lf (flux)

︸ ︷︷ ︸
Surface kernel

. Mij =

∫

Dk

φj(x)φi (x)

Lf = M−1Mf .

4



Outline

• Weight-adjusted DG (WADG): high order wavespeed

• Bernstein-Bézier DG (BBDG): piecewise constant wavespeed

• Bernstein-Bézier WADG (BBWADG)

5



Outline

• Weight-adjusted DG (WADG): high order wavespeed

• Bernstein-Bézier DG (BBDG): piecewise constant wavespeed

• Bernstein-Bézier WADG (BBWADG)

5



High order approximation of media and geometry

(a) Mesh and exact c2 (b) Piecewise const. c2 (c) High order c2

Piecewise constant wavespeed c2: efficient, but spurious reflections.

1

c2(x)

∂p

∂t
+∇ · u = 0,

∂u
∂t

+∇p = 0.

High order wavespeeds: weighted mass matrices. Stable, but requires
pre-computation/storage of inverses or factorizations!

M1/c2
dp
dt

= AhU ,
(
M1/c2

)
ij

=

∫

Dk

1

c2(x)
φj(x)φi (x).

6



Weight-adjusted mass matrix

• Weight-adjusted DG (WADG): energy stable approximation of Mk
1/c2

Mk
1/c2

dp
dt
≈Mk

(
Mk

c2

)−1
Mk dp

dt
= AhU

• Reuses implementation for piecewise constant wavespeed

dp
dt

=
(
Mk
)−1 (

Mk
c2

)

︸ ︷︷ ︸
modified update

(
Mk
)−1

AhU
︸ ︷︷ ︸

RHS for c=1

• Modified update can be applied in a low storage manner using
quadrature-based interpolation Vq and L2 projection Pq.

Chan, Hewett, Warburton. 2017. Weight-adjusted discontinuous Galerkin methods: wave propagation in heterogeneous
media.

7



Quadrature-based operators

• Using quadrature rule

(
Mk

c2

)
ij

=

∫

Dk

c2(x)φki (x)φkj (x)dx = Jk
Nq∑

n=1

c2(xq
n )φi (x̂q

n )φj(x̂q
n )wn

where xq, x̂q denote quadrature points on Dk and D̂, respectively.

• Writing Mk
c2 into matrix form

Mk
c2 = JkV T

q diag (w) diag
(
c2
)
Vq

where
(Vq)ij = φj(x̂

q
i )

8



Quadrature-based operators

• The modified update can be written as

(
Mk
)−1 (

Mk
c2

)
= M−1V T

q diag (w)
︸ ︷︷ ︸

Pq

diag
(
c2
)
Vq

• Vq: evaluates function values at quadrature points.

• Pq: projects a function onto a polynomial space in L2 sense.

9



Wave simulations in heterogeneous media

(a) c2(x , y) (b) Standard DG (c) Weight-adjusted DG

• L2 convergence between optimal O(hN+1), provable O(hN+1/2).

• Difference between standard DG and WADG is O(hN+2).

Chan, Hewett, Warburton. 2017. Weight-adjusted DG methods: wave propagation in heterogeneous media.

10



WADG implementation

• In WADG

dp
dt

= Pq diag
(
c2
)
Vq︸ ︷︷ ︸

modified update

(
Mk
)−1

AhU
︸ ︷︷ ︸

RHS for c=1

• RHS for c = 1 produces a polynomial u.

• Vq evaluates values of u at quadrature points.

• Applying diag
(
c2
)

to u gives the product c2u.

• Pq projects c2u onto a polynomial space of degree N.

11



WADG implementation

• In WADG

dp
dt

= Pq diag
(
c2
)
Vq︸ ︷︷ ︸

modified update

(
Mk
)−1

AhU
︸ ︷︷ ︸

RHS for c=1

• RHS for c = 1 produces a polynomial u.

• Vq evaluates values of u at quadrature points.

• Applying diag
(
c2
)

to u gives the product c2u.

• Pq projects c2u onto a polynomial space of degree N.

11



WADG implementation

• In WADG

dp
dt

= Pq diag
(
c2
)
Vq︸ ︷︷ ︸

modified update

(
Mk
)−1

AhU
︸ ︷︷ ︸

RHS for c=1

• RHS for c = 1 produces a polynomial u.

• Vq evaluates values of u at quadrature points.

• Applying diag
(
c2
)

to u gives the product c2u.

• Pq projects c2u onto a polynomial space of degree N.

11



WADG implementation

• In WADG

dp
dt

= Pq diag
(
c2
)
Vq︸ ︷︷ ︸

modified update

(
Mk
)−1

AhU
︸ ︷︷ ︸

RHS for c=1

• RHS for c = 1 produces a polynomial u.

• Vq evaluates values of u at quadrature points.

• Applying diag
(
c2
)

to u gives the product c2u.

• Pq projects c2u onto a polynomial space of degree N.

11



WADG implementation

• In WADG

dp
dt

= Pq diag
(
c2
)
Vq︸ ︷︷ ︸

modified update

(
Mk
)−1

AhU
︸ ︷︷ ︸

RHS for c=1

• RHS for c = 1 produces a polynomial u.

• Vq evaluates values of u at quadrature points.

• Applying diag
(
c2
)

to u gives the product c2u.

• Pq projects c2u onto a polynomial space of degree N.

11



Outline

• Weight-adjusted DG (WADG): high order wavespeed

• Bernstein-Bézier DG (BBDG): piecewise constant wavespeed

• Bernstein-Bézier WADG (BBWADG)

12



Bernstein polynomial bases on simplices

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Each function attains its maximum at an equispaced lattice point of a d-simplex.

• Bernstein polynomials are associated with vertex, edge, face, and
interior equispaced nodes.

• Jumps across interfaces can be computed similarly to nodal bases
(reuse nodal DG framework).

13



Bernstein polynomial

• On the reference tetrahedron, the barycentric coordinates are

λ0 = −(1 + r + s + t)

2
, λ1 =

(1 + r)

2
, λ2 =

(1 + s)

2
, λ3 =

(1 + t)

2
.

• The Nth degree Bernstein basis is defined as

BN
α = CN

α λ
α0
0 λα1

1 λα2
2 λα3

3 , CN
α =

N!

α0!α1!α2!α3!
,

where α = (α0, α1, α2, α3) and α0 + α1 + α2 + α3 = N.

• Simple degree elevation of Bernstein polynomials

BN−1
α =

d∑

j=0

αj + 1

N
BN
α+ej

leads to sparse one-degree elevation operators.

14



BBDG: Bernstein-Bezier DG methods

Nodal DG: O(N6) cost in 3D vs O(N3) degrees of freedom.

Switch to Bernstein basis: sparse and structured matrices.

Optimal O(N3) application of differentiation and lifting matrices.

-1 -0.5 0 0.5 1
-0.2

0

0.2

0.4

0.6

0.8

1

Nodal bases in one, two, and three dimensions.

Chan, Warburton 2015. GPU-accelerated Bernstein-Bezier discontinuous Galerkin methods for wave propagation (SISC).

15



BBDG: Bernstein-Bezier DG methods

Nodal DG: O(N6) cost in 3D vs O(N3) degrees of freedom.

Switch to Bernstein basis: sparse and structured matrices.

Optimal O(N3) application of differentiation and lifting matrices.

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bernstein bases in one, two, and three dimensions.

Chan, Warburton 2015. GPU-accelerated Bernstein-Bezier discontinuous Galerkin methods for wave propagation (SISC).

15



BBDG: Bernstein-Bezier DG methods

Nodal DG: O(N6) cost in 3D vs O(N3) degrees of freedom.

Switch to Bernstein basis: sparse and structured matrices.

Optimal O(N3) application of differentiation and lifting matrices.

Sparse Bernstein differentiation matrices for the reference tetrahedron.

Chan, Warburton 2015. GPU-accelerated Bernstein-Bezier discontinuous Galerkin methods for wave propagation (SISC).

15



BBDG: Bernstein-Bezier DG methods

Nodal DG: O(N6) cost in 3D vs O(N3) degrees of freedom.

Switch to Bernstein basis: sparse and structured matrices.

Optimal O(N3) application of differentiation and lifting matrices.

Optimal O(N3) complexity “slice-by-slice” application of Bernstein lift.

Chan, Warburton 2015. GPU-accelerated Bernstein-Bezier discontinuous Galerkin methods for wave propagation (SISC).

15



BBDG vs Nodal DG

Numerical experiments are implemented on a mesh with 61276 elements

1 2 3 4 5 6 7 8
0

2

4

6

8

Degree N

R
u

n
ti

m
e

(s
)

Volume

Surface

Update

(a) Nodal DG runtimes

1 2 3 4 5 6 7 8
0

2

4

6

8

Degree N
R

u
n

ti
m

e
(s

)

Volume

Surface

Update

(b) BBDG runtimes

We observe BBDG achieves ≈ 6 × speedup at high orders (N = 8).

Chan, Warburton. 2017. GPU-accelerated Bernstein-Bézier discontinuous Galerkin methods for wave problems.

16



Outline

• Weight-adjusted DG (WADG): high order wavespeed

• Bernstein-Bézier DG (BBDG): piecewise constant wavespeed

• Bernstein-Bézier WADG (BBWADG)

17



BBWADG: polynomial multiplication and projection

(a) Exact c2 (b) M = 0 approximation (c) M = 1 approximation

• BBWADG reuses the volume and surface kernels from BBDG

• Instead of using quadrature-based L2 projection, BBWADG
approximates c2(x) with degree M polynomial, use fast Bernstein
algorithms for polynomial multiplication and projection.

18



Bernstein polynomial multiplication

• Assume h(x) = f (x)g(x), where f , g are Bernstein polynomials

f = c1λ0 + c2λ1 + c3λ2 + c4λ3, g =
∑

|α|≤N

dαB
N
α

• We can split the multiplication into d + 1 parts. For example, the
first part is

c1

∑

|α|≤N

dα
(
BN
αλ0

)
= c1

∑

|α|≤N

dα
αj + 1

N + 1
BN+1
α+e0

19



Bernstein polynomial multiplication

c1 +c2 +c3 +c4

⇥ =

Bernstein polynomial multiplication: for fixed M, O(N3) complexity.

20



Fast Bernstein polynomial projection

Given c2(x)u(x) as a degree (N + M) polynomial, apply L2 projection
matrix PN+M

N to reduce to degree N.

Polynomial L2 projection matrix PN+M
N under Bernstein basis:

PN+M
N =

N∑

j=0

cjEN
N−j

(
EN
N−j

)T

︸ ︷︷ ︸
P̃N

(
EN+M
N

)T

“Telescoping” form of P̃N : O(N4) complexity, more GPU-friendly.

(
c0I + EN

N−1

(
c1I + EN−1

N−2 (c2I + · · · )
(
EN−1
N−2

)T)(
EN
N−1

)T)

21



Illustration of GPU algorithm for P̃N

�
EN

N�1

�T

�
EN�1

N�2

�T
EN�1

N�2

EN
N�1

Register

memory
S
h
ar

ed
m

em
or

y . . .

O(N3) shared memory

O(N) register memory per thread

O(N3) threads

(
c0I + EN

N−1

(
c1I + EN−1

N−2 (c2I + · · · )
(
EN−1
N−2

)T)(
EN
N−1

)T)

22



BBWADG: approximating c2 and accuracy

10−1.6 10−1.4 10−1.2 10−1 10−0.8 10−0.6 10−0.4 10−0.2

10−10

10−7

10−4

10−1

5

2

4

piecewise constant c2

piecewise linear c2

quadratic c2

Mesh size h

L
2

er
ro

r

M = 0

M = 1

M = 2

WADG (N = 4)

Approximating smooth c2(x) using L2 projection:
O(h2) for M = 0, O(h4) for M = 1, O(hM+3) for 0 < M ≤ N − 2.

23



BBWADG vs WADG (acoustic)

2 3 4 5 6 7 8 9 10

10−9

10−8

10−7

10−6

10−5

Degree N

R
u

n
ti

m
e

(s
)

Runtimes per element (update kernel)

BBWADG-1

BBWADG-2

N4

WADG

N6

24



BBWADG vs WADG (elastic)

2 3 4 5 6 7 8 9 10

10−9

10−8

10−7

10−6

10−5

Degree N

R
u

n
ti

m
e

(s
)

Runtimes per element (update kernel)

BBWADG-1

BBWADG-2

N4

WADG

N6

25



BBWADG vs WADG (acoustic)

N = 3 N = 4 N = 5 N = 6 N = 7 N = 8

WADG 2.02e-8 4.91e-8 1.20e-7 2.19e-7 4.87e-7 5.25e-6

BBWADG-1 2.09e-8 3.32e-8 6.56e-8 8.54e-8 1.35e-7 1.65e-7

Speedup 0.9665 1.4789 1.8292 2.5644 3.6074 31.8182

For N ≥ 8, WADG becomes much more expensive because of the
quadrature points construction.

(d) N = 7 quadrature (e) N = 8 quadrature
26



Summary and acknowledgements

Weight-adjusted DG: stability and efficiency for heterogeneous media.

BBWADG: improved complexity for approximate wavespeeds.

This work is supported by the National Science Foundation under
DMS-1712639 and DMS-1719818.

Thank you! Questions?

Guo, Chan. 2018. Bernstein-Bezier weight-adjusted discontinuous Galerkin methods for wave propagation.

Chan, Hewett, Warburton. 2016. Weight-adjusted DG methods: wave propagation in heterogeneous media (SISC).

Chan 2017. Weight-adjusted DG methods: matrix-valued weights and elastic wave prop. in heterogeneous media (IJNME).

Chan, Warburton 2015. GPU-accelerated Bernstein-Bezier discontinuous Galerkin methods for wave propagation (SISC).

27


