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First-order wave equations

e Acoustic wave equation:
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e Elastic wave equation:
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e Numerical scheme: high order, explicit time-stepping, parallelizable




High order DG methods for wave propagation

e Unstructured (tetrahedral)
meshes for geometric flexibility.
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Figure courtesy of Axel Modave.
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High order DG methods for wave propagation

e Unstructured (tetrahedral)

meshes for geometric flexibility.

e High order: low numerical
dissipation and dispersion.

e High order approximations:
more accurate per unknown.
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High order DG methods for wave propagation

e Unstructured (tetrahedral)
meshes for geometric flexibility.

e High order: low numerical
dissipation and dispersion.

e High order approximations:
more accurate per unknown.

Graphics processing units (GPU).

e Explicit time stepping: high
performance on many-core.



Time-domain nodal DG methods

Assume u(x,t) = > ujp;(x) on D

e Compute numerical flux at face
nodes (non-local).
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Time-domain nodal DG methods

Assume u(x,t) = > ujp;(x) on D

e Compute numerical flux at face
nodes (non-local).

e Compute RHS of (local) ODE.

du
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Time-domain nodal DG methods

Assume u(x,t) = > ujp;(x) on D

e Compute numerical flux at face
nodes (non-local).

e Compute RHS of (local) ODE.

e Evolve (local) solution using explicit
time integration (RK, AB, etc).

du
E = DXU + Z Lf (ﬂllX) .
~~ Volume kernel faces
Update kernel

Surface kernel



e Weight-adjusted DG (WADG): high order wavespeed
e Bernstein-Bézier DG (BBDG): piecewise constant wavespeed

e Bernstein-Bézier WADG (BBWADG)



e Weight-adjusted DG (WADG): high order wavespeed



High order approximation of media and geometry

a) Mesh and exact ¢? b) Piecewise const. c? c) High order ¢?
(a)

m Piecewise constant wavespeed c?: efficient, but spurious reflections.
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m High order wavespeeds: weighted mass matrices. Stable, but requires
pre-computation /storage of inverses or factorizations!
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Weight-adjusted mass matrix

e Weight-adjusted DG (WADG): energy stable approximation of M{‘/Cz

dp k(pgk\ gk dp
M F M (M) ™ L =AU

e Reuses implementation for piecewise constant wavespeed
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modified update RHS for c=1

e Modified update can be applied in a low storage manner using
quadrature-based interpolation V, and L? projection P,.

Chan, Hewett, Warburton. 2017. Weight-adjusted discontinuous Galerkin methods: wave propagation in heterogeneous
media.



Quadrature-based operators

e Using quadrature rule

Ng
(M), = [ 00kt = I3 (&) w,
n=1
where x9, %9 denote quadrature points on DX and D, respectively.
e Writing MfZ into matrix form
Mfz = Jk Vquiag (w) diag (c2) Vq

where
(Va); = 0;(%7)



Quadrature-based operators

e The modified update can be written as

(M")il (Még) — M1V diag (w) diag (¢?) V,,

Pq

e V,: evaluates function values at quadrature points.

e P,: projects a function onto a polynomial space in L? sense.



Wave simulations in heterogeneous media

. = S

A(x,y) ) Standard DG ¢) Weight-adjusted DG

e L2 convergence between optimal O(hN+1), provable O(hN+1/2).

e Difference between standard DG and WADG is O(hV+?).

Chan, Hewett, Warburton. 2017. Weight-adjusted DG methods: wave propagation in heterogeneous media.
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WADG implementation

e In WADG

dp . -1
= = P, diag (%) V,q (M)~ A

modified update RHS for c—=1
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WADG implementation

e In WADG

dp . -1
= = P, diag (%) V,q (M)~ A

modified update RHS for c—=1

e RHS for ¢ =1 produces a polynomial w.
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WADG implementation

e In WADG

d -1
d—': = P, diag (c?) V, (Mk> AU
N—
modified update RHS for c=1

e RHS for ¢ =1 produces a polynomial v.

e V, evaluates values of u at quadrature points.
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WADG implementation

In WADG

d -1
d—': = P, diag (c?) V, (Mk> AU
N—
modified update RHS for c=1

e RHS for ¢ =1 produces a polynomial v.

V, evaluates values of u at quadrature points.

Applying diag (c?) to u gives the product c?u.
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WADG implementation

In WADG

dp . -1
= = P, diag (%) V,q (M)~ A

modified update RHS for c—=1

e RHS for ¢ =1 produces a polynomial v.

V, evaluates values of u at quadrature points.

Applying diag (c?) to u gives the product c?u.

e P, projects c?u onto a polynomial space of degree N.
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e Bernstein-Bézier DG (BBDG): piecewise constant wavespeed
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Bernstein polynomial bases on simplices

Each function attains its maximum at an equispaced lattice point of a d-simplex.

e Bernstein polynomials are associated with vertex, edge, face, and
interior equispaced nodes.

e Jumps across interfaces can be computed similarly to nodal bases
(reuse nodal DG framework).
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Bernstein polynomial

e On the reference tetrahedron, the barycentric coordinates are

. (I4r+s+1t) _(1+7r) ~(1+5s) C(1+1)
>\0 - 2 ) >\1 - 2 ’ >\2 - 2 ) >\3 - 2 .
e The Nth degree Bernstein basis is defined as
N!

BN = cN)oo 31 o2 03 cN—
@ a0 1 2 37 @ 040!051!042!043!’

where o = (v, a1, ap,3) and ag + a1 + ap + a3 = N.

e Simple degree elevation of Bernstein polynomials

B(I)\él ! = Z JN Ba+3j
j=0

leads to sparse one-degree elevation operators.
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BBDG: Bernstein-Bezier DG methods

m Nodal DG: O(N®) cost in 3D vs O(N3) degrees of freedom.

Nodal bases in one, two, and three dimensions.

Chan, Warburton 2015. GPU-accelerated Bernstein-Bezier discontinuous Galerkin methods for wave propagation (SISC).
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BBDG: Bernstein-Bezier DG methods

m Nodal DG: O(N®) cost in 3D vs O(N3) degrees of freedom.

m Switch to Bernstein basis: sparse and structured matrices.
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Sparse Bernstein differentiation matrices for the reference tetrahedron.

Chan, Warburton 2015. GPU-accelerated Bernstein-Bezier discontinuous Galerkin methods for wave propagation (SISC).
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BBDG: Bernstein-Bezier DG methods

m Nodal DG: O(N®) cost in 3D vs O(N3) degrees of freedom.
m Switch to Bernstein basis: sparse and structured matrices.

m Optimal O(N3) application of differentiation and lifting matrices.
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Optimal O(N3) complexity “slice-by-slice” application of Bernstein lift.

Chan, Warburton 2015. GPU-accelerated Bernstein-Bezier discontinuous Galerkin methods for wave propagation (SISC).
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BBDG vs Nodal DG

Numerical experiments are implemented on a mesh with 61276 elements
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We observe BBDG achieves ~ 6 x speedup at high orders (N = 8).

Chan, Warburton. 2017. GPU-accelerated Bernstein-Bézier discontinuous Galerkin methods for wave problems.
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e Bernstein-Bézier WADG (BBWADG)
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BBWADG: polynomial multiplication and projection

. e

(a) Exact ¢? (b) M = 0 approximation  (c) M = 1 approximation

o BBWADG reuses the volume and surface kernels from BBDG

e Instead of using quadrature-based L2 projection, BBWADG
approximates c?(x) with degree M polynomial, use fast Bernstein
algorithms for polynomial multiplication and projection.
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Bernstein polynomial multiplication

e Assume h(x) = f(x)g(x), where f, g are Bernstein polynomials

f=al+ah+altals, g= Y ddBY
la[<N

e We can split the multiplication into d + 1 parts. For example, the
first part is

c do (B2 = ¢ dn it g
IEN a( 0) 10%:,\/ N+1 +eo
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Bernstein polynomial multiplication
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Bernstein polynomial multiplication: for fixed M, O(N3) complexity.
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Fast Bernstein polynomial projection

m Given c?(x)u(x) as a degree (N + M) polynomial, apply L? projection
matrix Pﬁ“w to reduce to degree N.

N+M
PN

m Polynomial L? projection matrix under Bernstein basis:

N
T T
N+M N N N+M
Py" :ZCJEij (Eij> (ENJr )
=0

Py

m “Telescoping” form of Py: O(N*) complexity, more GPU-friendly.

T T
(cat+ B (car + € et + ) (82) ) (81))
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Illustration of GPU algorithm for Py

Register

memory

&, O(N?) threads
O(N?) shared memory

Shared memory
)
sl
2z

O(N) register memory per thread
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BBWADG: approximating ¢ and accuracy

T
107t - 1
piecewise constant ¢
5 07t o a
: piecewise linear ¢
D
10-7 |- M=0 —
quadratic ¢ M=1
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Mesh size h

Approximating smooth c?(x) using L? projection:
O(K?) for M =0, O(h*) for M = 1, O(hM+3) for 0 < M < N — 2.
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BBWADG vs WADG (acoustic)

Runtimes per element (update kernel)
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BBWADG vs WADG (elastic)

Runtimes per element (update kernel)
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BBWADG vs WADG (acoustic)

N=3 | N=4 | N=5| N=6 | N=7 | N=38
WADG 2.02e-8 | 4.91e-8 | 1.20e-7 | 2.19e-7 | 4.87e-7 | 5.25e-6
BBWADG-1 || 2.09e-8 | 3.32e-8 | 6.56e-8 | 8.54e-8 | 1.35e-7 | 1.65e-7
Speedup 0.9665 | 1.4789 | 1.8292 | 2.5644 | 3.6074 | 31.8182

For N > 8, WADG becomes much more expensive because of the
quadrature points construction.

(d) N =7 quadrature

(e) N = 8 quadrature
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Summary and acknowledgements

m Weight-adjusted DG: stability and efficiency for heterogeneous media.

m BBWADG: improved complexity for approximate wavespeeds.

m This work is supported by the National Science Foundation under
DMS-1712639 and DMS-1719818.

Thank you! Questions?

Guo, Chan. 2018. Bernstein-Bezier weight-adjusted discontinuous Galerkin methods for wave propagation.

Chan, Hewett, Warburton. 2016. Weight-adjusted DG methods: wave propagation in heterogeneous media (SISC).

Chan 2017. Weight-adjusted DG methods: matrix-valued weights and elastic wave prop. in heterogeneous media (IJNME).

Chan, Warburton 2015. GPU-accelerated Bernstein-Bezier discontinuous Galerkin methods for wave propagation (SISC).
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