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Numerical simulation of wave propagation

Many procedures requires accurately and efficiently solving
time-dependent wave equations in realistic settings.

m Imaging (seismic, medical)

m Engineering design
(scattering, design)

m Computational physics
(aeroacoustics, astrophysics)
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m Unstructured (tetrahedral)
meshes for geometric flexibility.
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Figure courtesy of Axel Modave.
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Discontinuous Galerkin (DG) methods for waves

m Unstructured (tetrahedral)
meshes for geometric flexibility.

m High order: low numerical
dissipation and dispersion.

Fine linear approximation.
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Discontinuous Galerkin (DG) methods for waves

m Unstructured (tetrahedral)
meshes for geometric flexibility.

m High order: low numerical
dissipation and dispersion.
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Coarse quadratic approximation.
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Discontinuous Galerkin (DG)

methods for waves

m Unstructured (tetrahedral)
meshes for geometric flexibility.

m High order: low numerical
dissipation and dispersion.

m High order approximations:
more accurate per unknown.
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Discontinuous Galerkin (DG) methods for waves

m Unstructured (tetrahedral)
meshes for geometric flexibility.

m High order: low numerical
dissipation and dispersion.

m High order approximations:
more accurate per unknown.

Graphics processing units (GPU).

m Explicit time stepping: high
performance on many-core.
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Time-domain nodal DG methods

Assume u(x,t) = > u;jp;(x) on D*

Mesh courtesy of J.F. Remacle
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Example: advection equation.
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Assume u(x,t) = > ujp;(x) on D*

m Compute numerical flux at face
nodes (non-local).

du
WDt 3 L (). My = [ )00

faces

Ly = M 1My,



Time-domain nodal DG methods

Assume u(x,t) = > u;jp;(x) on D*

m Compute numerical flux at face
nodes (non-local).

m Compute RHS of (local) ODE.

du
PP D,u + Z L (flux).

Volume kernel faces

Surface kernel
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Time-domain nodal DG methods

Assume u(x,t) = > u;jp;(x) on D*

m Compute numerical flux at face

nodes (non-local). p * ’
m Compute RHS of (local) ODE. P,
m Evolve (local) solution using explicit ° x P
time integration (RK, AB, etc). P
du
T D.u + Z L¢ (flux). M; _/ j(x)oi(x
t ——
u da\te/k/e o Volume kernel ~ _faces 1
P " Surface kernel Lr = M.
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Weight-adjusted DG (WADG): high order heterogeneous media

Energy stable discontinuous Galerkin formulations

m Model problem: acoustic wave equation (pressure-velocity system)

10p Jdu
?E—V'U, E—Vp

m Local formulation

[ o= [, ey [, 061 s lebg

/Du?t /Vp v+ / ([p] + 7u [u] - n) v

m High order accuracy, semi-discrete energy stability

t <Z/kc2+|U| ) Z—zk:/aDkTp[[p]]2+Tu[[u~n]]2§0.
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Weight-adjusted DG (WADG): high order heterogeneous media

High order approximation of smoothly varying media

a) Mesh and exact c? b) Piecewise const. c¢? c) High order ¢?
(a) g

m Piecewise const. ¢?: energy stable and efficient, but inaccurate.

1 0p Ju

— 24 V.u=0, et

c?(x) ot * ot

m High order wavespeeds: weighted mass matrices. Stable, but
expensive (pre-computation + storage of matrix inverses)!

+Vp=0.

d 1
MyaSh = Al (Mya), = [ eso(x)ax).
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Weight-adjusted DG (WADG): high order heterogeneous media

Weight-adjusted DG (WADG)

m Weight-adjusted DG: provably energy stable approx. of My .

dp

Ml/&&

_ d
~M(Mz) MR = AU
dt
m New evaluation reuses implementation for constant wavespeed

dp

= M1 (M) M~ AU
dt —_—— —_———

modified update  constant wavespeed RHS

m Low storage matrix-free application of M~!M_. using

quadrature-based interpolation and L2 projection matrices Vy, Pq.

(M)"' M. = M1V W diag (?) V.
N —’

Pq

Chan, Hewett, Warburton (2017). Weight-adjusted DG methods: wave propagation in heterogeneous media.
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WADG: nearly identical

) S(x,y) (b) Standard DG

Figure: Standard vs. weight-adjusted DG with spatially varying c?.

m The L? error is O(hN+1), but the difference between the DG and
WADG solutions is O(hV+2)!
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WADG: nearly identical

) S(x,y) (b) Weighted-adjusted DG

Figure: Standard vs. weight-adjusted DG with spatially varying c?.

m The L? error is O(hN+1), but the difference between the DG and
WADG solutions is O(hV+2)!
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Weight-adjusted DG (WADG): high order heterogeneous media

WADG: more efficient than storing Ml_/lc2 on GPUs

Standard DG .

asnns — Qs

Efficiency on GPUs: reduce memory accesses and data movement!
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Weight-adjusted DG (WADG): high order heterogeneous media

WADG: more efficient than storing M ;2 on GPUs

Weight-adjusted DG

Efficiency on GPUs: reduce memory accesses and data movement!
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Elastic-acoustic coupled media

Matrix-valued weights and elastic wave propagation

m Symmetric velocity-stress formulation (entries of A; are +1 or 0)

8v_ T@cr 180_ d Ov

1=

m DG formulation: simple penalty fluxes, matrix-weighted mass matrix

100000 Mcp - My
Al=(o0000 1|, M= : S
000010 Mci ... Mca

m Weight-adjusted approx. to (Mcq)_1 decouples each component

i (leM YMc(loM™).
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Elastic-acoustic coupled media

Simple to incorporate anisotropic media
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(a) Reference solution (b) WADG solution

Figure: Anisotropic media simply involves modifying the definition of C.

Komatitsch, Barnes, Tromp (2000). Simulation of anisotropic wave propagation based upon a spectral element method.
Chan (2018). Weight-adjusted DG methods: matrix-valued weights and elastic wave prop. in heterogeneous media.
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Elastic-acoustic coupled media

Energy stable acoustic-elastic coupling

o,V (Elastic)

u-n=v-n
Alo =pn

Py W (Acoustic)
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Elastic-acoustic coupled media

Energy stable acoustic-elastic coupling

 n-[S1+pigl]
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m Traditional upwind acoustic-elastic fluxes are complex to derive.

m Cannot prove energy stability in the case of heterogeneous media.

Wilcox, Stadler, Burstedde, Ghattas (2010). A high-order discontinuous Galerkin method for wave propagation through

coupled elastic—acoustic media.
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Elastic-acoustic coupled media

Numerical results: coupled acoustic-elastic media

1015 10!
Mesh size h Mesh size h
(a) Snell's law solution (b) Scholte wave solution

High order convergence of L? error for acoustic-elastic media.
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Anisotropic
elastic media

Komatitsch, Barnes, Tromp (2000). Simulation of anisotropic wave propagation based upon a spectral element method.

Guo, Acosta, Chan (2019). A weight-adjusted DG method for wave propagation in coupled elastic-acoustic media.



Elastic-acoustic coupled media

Example with isotropic-anisotropic acoustic-elastic media

-0.1 0 0.1 -0.2 0 0.2
(a) T =30us (b) T =60us

Piecewise constant anisotropic-isotropic acoustic-elastic media.

Komatitsch, Barnes, Tromp (2000). Simulation of anisotropic wave propagation based upon a spectral element method.
Guo, Acosta, Chan (2019). A weight-adjusted DG method for wave propagation in coupled elastic-acoustic media.
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Elastic-acoustic coupled media

Example with isotropic-anisotropic acoustic-elastic media

-0.1 0 0.1 -0.2 0 0.2
(a) T =30us (b) T =60us

Piecewise smoothly varying anisotropic-isotropic acoustic-elastic media.

Komatitsch, Barnes, Tromp (2000). Simulation of anisotropic wave propagation based upon a spectral element method.
Guo, Acosta, Chan (2019). A weight-adjusted DG method for wave propagation in coupled elastic-acoustic media.
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Bernstein-Bezier WADG: high order efficiency

Computational costs at high orders of approximation

Problem: WADG at high orders becomes expensive!

WADG runtimes

I I I I I I I TN
6 I DVqume L
[ surface .
m Large dense matrices:
w DUpdate 6
L | O(N®) work per element.
£
£ -
& 5l | m Idea: choose basis such that
E — matrices are sparse.
0t === E
1 2 3 4 5 6 7 8 9

Degree N

WADG runtimes for 50 timesteps, 98304 elements.
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Bernstein-Bezier WADG: high order efficiency

BBDG: Bernstein-Bezier DG methods

m Nodal DG: O(N®) cost in 3D vs O(N3) degrees of freedom.

Nodal bases in one, two, and three dimensions.

Chan, Warburton 2017. GPU-accelerated Bernstein-Bezier discontinuous Galerkin methods for wave propagation (SISC).
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Bernstein-Bezier WADG: high order efficiency

BBDG: Bernstein-Bezier DG methods

m Nodal DG: O(N®) cost in 3D vs O(N3) degrees of freedom.

m Switch to Bernstein basis: sparse and structured matrices.

Bernstein bases in one, two, and three dimensions.

Chan, Warburton 2017. GPU-accelerated Bernstein-Bezier discontinuous Galerkin methods for wave propagation (SISC).
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Bernstein-Bezier WADG: high order efficiency

BBDG: Bernstein-Bezier DG methods

m Nodal DG: O(N®) cost in 3D vs O(N3) degrees of freedom.

m Switch to Bernstein basis: sparse and structured matrices.

.
o see

nz =80

Tetrahedral Bernstein differentiation and degree elevation matrices.

Chan, Warburton 2017. GPU-accelerated Bernstein-Bezier discontinuous Galerkin methods for wave propagation (SISC).
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Bernstein-Bezier WADG: high order efficiency

BBDG: Bernstein-Bezier DG methods

m Nodal DG: O(N®) cost in 3D vs O(N3) degrees of freedom.
m Switch to Bernstein basis: sparse and structured matrices.

m Optimal O(N®) application of differentiation and lifting matrices.

ﬂn\\a\
1) (¢ 9 (o \o
(o o ~) (o u\ ~0) (o ~o )

Optimal O(N3) complexity “slice-by-slice” application of Bernstein lift.

Chan, Warburton 2017. GPU-accelerated Bernstein-Bezier discontinuous Galerkin methods for wave propagation (SISC).
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Bernstein-Bezier WADG: high order efficiency

BBDG: efficient volume, surface kernels

Nodal DG

I I I
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DSurface
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Update kernel
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Volume kernel
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Bernstein-Bezier DG

I I I
[ |:| Volume
D Surface
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Surface kernel
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Bernstein-Bezier WADG: high order efficiency

A faster BBWADG update kernel

A
>
P-4
Z5
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-

=
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(a) Exact ¢? (b) M = 0 approximation  (c) M = 1 approximation

m Exploit continuous WADG steps: given u(x), compute
Py (u(x)c*(x)), Py = L? projection operator.

m Our approach: approx. c?(x) with degree M polynomial, use fast
Bernstein algorithms for polynomial multiplication and projection.

m Can reuse fast O(/N3) Bernstein-based volume and surface kernels.
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Bernstein-Bezier WADG: high order efficiency

BBWADG: effect of approximating c? on accuracy

piecewise constant ¢
-3 .
10 2

2

piecewise linear ¢

5
o 1076 / —
9 A 42
quadratic ¢ o m_o
1079 - —e— M=1 n
—A— M =2
—16 —a— WADG (N = 5)
10-12 L | \ \ \ I I \
10—1.6 10—1.4 10—1.2 10—1 10—0.8 10—0.6 10—0.4 10—0.2

Mesh size h

Approximating smooth c?(x) using L? projection:
O(h?) for M =0, O(h*) for M =1, O(hM*+3) for 0 < M < N — 2.
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Bernstein-Bezier WADG: high order efficiency

Fast Bernstein polynomial multiplication

C4
X s
(&1 C3
C2

4 0 o

10 10 10 10

20, 20 .'. 20 20
Cl 30 +C2 30 +63 30 +C4 30

40 A 40 40 ) 40

50 50 50 50

o 10 20 30 0 10 20 30 o 10 20 30 o 10 20 30

Bernstein polynomial multiplication (M = 1 shown), O(N3) cost for fixed M.
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Bernstein-Bezier WADG: high order efficiency

Fast Bernstein polynomial projection

m Given c?(x)u(x) as a degree (N + M) polynomial, apply L? projection
matrix PHJFM to reduce to degree N.

m Polynomial L2 projection matrix P,’\\,HM under Bernstein basis:

N+M & N N enem T
Py = Z GEN_; (EN—j) (EN )
=0

Py

m “Telescoping” form of Py: O(N*) complexity, more GPU-friendly.

(co/ FEY, (cu +EVS (el +--) (EV3) ) (EX-1) )
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Bernstein-Bezier WADG: high order efficiency

Sketch of GPU algorithm for Py

Register

memory

(=3 B, )

U/ O(N?®) threads
O(N?®) shared memory

Shared memory

O(N) register memory per thread

\/ \—/

<C01 +EN | (cll +EY ) (col +--) (EI\A/I__21> T> (E/\A/—1> T)
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Bernstein-Bezier WADG: high order efficiency

BBWADG: computational runtime (3D acoustics)

10°° ¢ \ E

= ——A—— BBWADG-1 1

[ | —a—BBWADG2 ]

- - A- N4 - » —

—@— WADG o

6L |-4- P |

10 E =

— L i
(%]

S

o 1077 F E

E B ]

5 I ]
c

5 | N

1078 E

1070 E

Degree N

Per-element runtimes of update kernels for BBWADG vs WADG (acoustic). We
observe an asymptotic complexity of O(N*) per element for N > 1.
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Bernstein-Bezier WADG: high order efficiency

Summary and future work

m Weight-adjusted DG: high order accuracy, provable stability, and
efficiency in heterogeneous acoustic-elastic media.

m Current work: stable WADG for moving curved meshes (r-adaptivity)
and extension to nonlinear conservation laws.

m This work has been supported by TOTAL E&P Research and
Technology USA and the National Science Foundation under
DMS-1712639 and DMS-1719818.
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