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Numerical simulation of wave propagation

Many procedures requires accurately and efficiently solving
time-dependent wave equations in realistic settings.

Imaging (seismic, medical)

Engineering design
(scattering, design)

Computational physics
(aeroacoustics, astrophysics)

https://www.comsol.com/model/image/12737/big.png
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Discontinuous Galerkin (DG) methods for waves

Unstructured (tetrahedral)
meshes for geometric flexibility.

High order: low numerical
dissipation and dispersion.

High order approximations:
more accurate per unknown.

Explicit time stepping: high
performance on many-core.

Figure courtesy of Axel Modave.
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Discontinuous Galerkin (DG) methods for waves

Unstructured (tetrahedral)
meshes for geometric flexibility.

High order: low numerical
dissipation and dispersion.

High order approximations:
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Explicit time stepping: high
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Coarse quadratic approximation.
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Discontinuous Galerkin (DG) methods for waves

Unstructured (tetrahedral)
meshes for geometric flexibility.

High order: low numerical
dissipation and dispersion.

High order approximations:
more accurate per unknown.

Explicit time stepping: high
performance on many-core.

Max errors vs. dofs.
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Discontinuous Galerkin (DG) methods for waves

Unstructured (tetrahedral)
meshes for geometric flexibility.

High order: low numerical
dissipation and dispersion.

High order approximations:
more accurate per unknown.

Explicit time stepping: high
performance on many-core.

Graphics processing units (GPU).
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Time-domain nodal DG methods

Assume u(x , t) =
∑

ujφj(x) on Dk

Compute numerical flux at face
nodes (non-local).

Compute RHS of (local) ODE.

Evolve (local) solution using explicit
time integration (RK, AB, etc).

Mesh courtesy of J.F. Remacle

∂u

∂t
=
∂u

∂x

Example: advection equation.

Mij =

∫

Dk

φj(x)φi (x)

Lf = M−1Mf .
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Time-domain nodal DG methods

Assume u(x , t) =
∑

ujφj(x) on Dk

Compute numerical flux at face
nodes (non-local).

Compute RHS of (local) ODE.

Evolve (local) solution using explicit
time integration (RK, AB, etc).

du

dt︸︷︷︸
Update kernel

= Dxu︸︷︷︸
Volume kernel

+
∑

faces

Lf (flux)

︸ ︷︷ ︸
Surface kernel

. Mij =
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Weight-adjusted DG (WADG): high order heterogeneous media

Outline

1 Weight-adjusted DG (WADG): high order heterogeneous media

2 Elastic-acoustic coupled media

3 Bernstein-Bezier WADG: high order efficiency
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Weight-adjusted DG (WADG): high order heterogeneous media

Energy stable discontinuous Galerkin formulations

Model problem: acoustic wave equation (pressure-velocity system)

1

c2

∂p

∂t
= ∇ · u, ∂u

∂t
= ∇p

Local formulation
∫

Dk

1

c2

∂p

∂t
q =

∫

Dk

∇ · uq +
1

2

∫

∂Dk

([[u]] · n + τp [[p]]) q

∫

Dk

∂u
∂t

v =

∫

Dk

∇p · v +
1

2

∫

∂Dk

([[p]] + τu [[u]] · n) v

High order accuracy, semi-discrete energy stability

∂

∂t

(∑

k

∫

Dk

p2

c2
+ |u|2

)
= −

∑

k

∫

∂Dk

τp [[p]]2 + τu [[u · n]]2 ≤ 0.
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Weight-adjusted DG (WADG): high order heterogeneous media

High order approximation of smoothly varying media

(a) Mesh and exact c2 (b) Piecewise const. c2 (c) High order c2

Piecewise const. c2: energy stable and efficient, but inaccurate.

1

c2(x)

∂p

∂t
+∇ · u = 0,

∂u
∂t

+∇p = 0.

High order wavespeeds: weighted mass matrices. Stable, but
expensive (pre-computation + storage of matrix inverses)!

M1/c2
dp
dt

= AhU ,
(
M1/c2

)
ij

=

∫

Dk

1

c2(x)
φj(x)φi (x).
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Weight-adjusted DG (WADG): high order heterogeneous media

Weight-adjusted DG (WADG)

Weight-adjusted DG: provably energy stable approx. of M1/c2

M1/c2
dp
dt
≈M (Mc2)−1 M

dp
dt

= AhU .

New evaluation reuses implementation for constant wavespeed

dp
dt

= M−1 (Mc2)︸ ︷︷ ︸
modified update

M−1AhU︸ ︷︷ ︸
constant wavespeed RHS

Low storage matrix-free application of M−1Mc2 using
quadrature-based interpolation and L2 projection matrices Vq,Pq.

(M)−1 Mc2 = M−1V T
q W

︸ ︷︷ ︸
Pq

diag
(
c2
)
Vq.

Chan, Hewett, Warburton (2017). Weight-adjusted DG methods: wave propagation in heterogeneous media.
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Weight-adjusted DG (WADG): high order heterogeneous media

WADG: nearly identical to DG w/weighted mass matrices

(a) c2(x , y) (b) Standard DG

Figure: Standard vs. weight-adjusted DG with spatially varying c2.

The L2 error is O(hN+1), but the difference between the DG and
WADG solutions is O(hN+2)!
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WADG: nearly identical to DG w/weighted mass matrices

(a) c2(x , y) (b) Weighted-adjusted DG

Figure: Standard vs. weight-adjusted DG with spatially varying c2.

The L2 error is O(hN+1), but the difference between the DG and
WADG solutions is O(hN+2)!
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Weight-adjusted DG (WADG): high order heterogeneous media

WADG: more efficient than storing M−1
1/c2 on GPUs

Efficiency on GPUs: reduce memory accesses and data movement!
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Elastic-acoustic coupled media

Outline

1 Weight-adjusted DG (WADG): high order heterogeneous media

2 Elastic-acoustic coupled media

3 Bernstein-Bezier WADG: high order efficiency
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Elastic-acoustic coupled media

Matrix-valued weights and elastic wave propagation

Symmetric velocity-stress formulation (entries of Ai are ±1 or 0)

ρ
∂v
∂t

=
d∑

i=1

AT
i

∂σ

∂xi
, C−1∂σ

∂t
=

d∑

i=1

Ai
∂v
∂xi

.

DG formulation: simple penalty fluxes, matrix-weighted mass matrix

AT
1 =




1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0


 , MC−1 =




MC−1
11

. . . MC−1
1d

...
. . .

...
MC−1

d1
. . . MC−1

dd




Weight-adjusted approx. to (MC−1)−1 decouples each component

M−1
C−1 ≈

(
I ⊗M−1

)
MC

(
I ⊗M−1

)
.
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Elastic-acoustic coupled media

Simple to incorporate anisotropic media

(a) Reference solution (b) WADG solution

Figure: Anisotropic media simply involves modifying the definition of C .

Komatitsch, Barnes, Tromp (2000). Simulation of anisotropic wave propagation based upon a spectral element method.

Chan (2018). Weight-adjusted DG methods: matrix-valued weights and elastic wave prop. in heterogeneous media.
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Elastic-acoustic coupled media

Energy stable acoustic-elastic coupling
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Elastic-acoustic coupled media

Energy stable acoustic-elastic coupling

Traditional upwind acoustic-elastic fluxes are complex to derive.

Cannot prove energy stability in the case of heterogeneous media.

Wilcox, Stadler, Burstedde, Ghattas (2010). A high-order discontinuous Galerkin method for wave propagation through
coupled elastic–acoustic media.
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Elastic-acoustic coupled media

Energy stable acoustic-elastic coupling
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Elastic-acoustic coupled media

Energy stable acoustic-elastic coupling
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Elastic-acoustic coupled media

Numerical results: coupled acoustic-elastic media
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(a) Snell’s law solution

10−1.5 10−1

10−9

10−6

10−3 1.90

3.00

4.00

4.88

Mesh size h

N = 1

N = 2

N = 3

N = 4

(b) Scholte wave solution

High order convergence of L2 error for acoustic-elastic media.
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Elastic-acoustic coupled media

Example with isotropic-anisotropic acoustic-elastic media

Komatitsch, Barnes, Tromp (2000). Simulation of anisotropic wave propagation based upon a spectral element method.

Guo, Acosta, Chan (2019). A weight-adjusted DG method for wave propagation in coupled elastic-acoustic media.
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Elastic-acoustic coupled media

Example with isotropic-anisotropic acoustic-elastic media

(a) T = 30µs (b) T = 60µs

Piecewise constant anisotropic-isotropic acoustic-elastic media.

Komatitsch, Barnes, Tromp (2000). Simulation of anisotropic wave propagation based upon a spectral element method.

Guo, Acosta, Chan (2019). A weight-adjusted DG method for wave propagation in coupled elastic-acoustic media.
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Elastic-acoustic coupled media

Example with isotropic-anisotropic acoustic-elastic media

(a) T = 30µs (b) T = 60µs

Piecewise smoothly varying anisotropic-isotropic acoustic-elastic media.

Komatitsch, Barnes, Tromp (2000). Simulation of anisotropic wave propagation based upon a spectral element method.

Guo, Acosta, Chan (2019). A weight-adjusted DG method for wave propagation in coupled elastic-acoustic media.

Guo (CAAM) Stable high order DG for waves May 20, 2020 14 / 24



Bernstein-Bezier WADG: high order efficiency

Outline

1 Weight-adjusted DG (WADG): high order heterogeneous media

2 Elastic-acoustic coupled media

3 Bernstein-Bezier WADG: high order efficiency
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Bernstein-Bezier WADG: high order efficiency

Computational costs at high orders of approximation

Problem: WADG at high orders becomes expensive!

1 2 3 4 5 6 7 8 9
0

2

4

6

Degree N

R
u

n
ti

m
e

(s
)

WADG runtimes

Volume

Surface

Update

WADG runtimes for 50 timesteps, 98304 elements.

Large dense matrices:
O(N6) work per element.

Idea: choose basis such that
matrices are sparse.
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Bernstein-Bezier WADG: high order efficiency

BBDG: Bernstein-Bezier DG methods

Nodal DG: O(N6) cost in 3D vs O(N3) degrees of freedom.

Switch to Bernstein basis: sparse and structured matrices.

Optimal O(N3) application of differentiation and lifting matrices.

-1 -0.5 0 0.5 1
-0.2

0

0.2

0.4

0.6

0.8

1

Nodal bases in one, two, and three dimensions.

Chan, Warburton 2017. GPU-accelerated Bernstein-Bezier discontinuous Galerkin methods for wave propagation (SISC).
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Chan, Warburton 2017. GPU-accelerated Bernstein-Bezier discontinuous Galerkin methods for wave propagation (SISC).
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Bernstein-Bezier WADG: high order efficiency

BBDG: Bernstein-Bezier DG methods

Nodal DG: O(N6) cost in 3D vs O(N3) degrees of freedom.

Switch to Bernstein basis: sparse and structured matrices.

Optimal O(N3) application of differentiation and lifting matrices.
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Tetrahedral Bernstein differentiation and degree elevation matrices.

Chan, Warburton 2017. GPU-accelerated Bernstein-Bezier discontinuous Galerkin methods for wave propagation (SISC).
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Bernstein-Bezier WADG: high order efficiency

BBDG: Bernstein-Bezier DG methods

Nodal DG: O(N6) cost in 3D vs O(N3) degrees of freedom.

Switch to Bernstein basis: sparse and structured matrices.

Optimal O(N3) application of differentiation and lifting matrices.

Optimal O(N3) complexity “slice-by-slice” application of Bernstein lift.

Chan, Warburton 2017. GPU-accelerated Bernstein-Bezier discontinuous Galerkin methods for wave propagation (SISC).
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Bernstein-Bezier WADG: high order efficiency

BBDG: efficient volume, surface kernels
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0

2

4

6

Degree N
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)

Nodal DG

Volume

Surface

1 2 3 4 5 6 7 8 9
0

2
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6

Degree N

Bernstein-Bezier DG

Volume

Surface

du

dt︸︷︷︸
Update kernel

= Dxu︸︷︷︸
Volume kernel

+
∑

faces

Lf (flux)

︸ ︷︷ ︸
Surface kernel

, Lf = M−1Mf .
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Bernstein-Bezier WADG: high order efficiency

A faster BBWADG update kernel

(a) Exact c2 (b) M = 0 approximation (c) M = 1 approximation

Exploit continuous WADG steps: given u(x), compute

PN

(
u(x)c2(x)

)
, PN = L2 projection operator.

Our approach: approx. c2(x) with degree M polynomial, use fast
Bernstein algorithms for polynomial multiplication and projection.

Can reuse fast O(N3) Bernstein-based volume and surface kernels.
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Bernstein-Bezier WADG: high order efficiency

BBWADG: effect of approximating c2 on accuracy
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Approximating smooth c2(x) using L2 projection:
O(h2) for M = 0, O(h4) for M = 1, O(hM+3) for 0 < M ≤ N − 2.
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Bernstein-Bezier WADG: high order efficiency

Fast Bernstein polynomial multiplication

c1 +c2 +c3 +c4

⇥ =

Bernstein polynomial multiplication (M = 1 shown), O(N3) cost for fixed M.
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Bernstein-Bezier WADG: high order efficiency

Fast Bernstein polynomial projection

Given c2(x)u(x) as a degree (N + M) polynomial, apply L2 projection
matrix PN+M

N to reduce to degree N.

Polynomial L2 projection matrix PN+M
N under Bernstein basis:

PN+M
N =

N∑

j=0

cjEN
N−j

(
EN
N−j

)T

︸ ︷︷ ︸
P̃N

(
EN+M
N

)T

“Telescoping” form of P̃N : O(N4) complexity, more GPU-friendly.

(
c0I + EN

N−1

(
c1I + EN−1

N−2 (c2I + · · · )
(
EN−1
N−2

)T)(
EN
N−1

)T)
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Bernstein-Bezier WADG: high order efficiency

Sketch of GPU algorithm for P̃N
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Bernstein-Bezier WADG: high order efficiency

BBWADG: computational runtime (3D acoustics)
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Per-element runtimes of update kernels for BBWADG vs WADG (acoustic). We
observe an asymptotic complexity of O(N4) per element for N � 1.
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Bernstein-Bezier WADG: high order efficiency

Summary and future work

Weight-adjusted DG: high order accuracy, provable stability, and
efficiency in heterogeneous acoustic-elastic media.

Current work: stable WADG for moving curved meshes (r -adaptivity)
and extension to nonlinear conservation laws.

This work has been supported by TOTAL E&P Research and
Technology USA and the National Science Foundation under
DMS-1712639 and DMS-1719818.
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