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Numerical simulation of wave propagation

Many procedures require accurately and efficiently solving hyperbolic
partial differential equations (PDEs) in realistic settings.

m Seismic and medical imaging
m Engineering design

m Computational fluids

S. Scott Collis et al. Unstructured Discontinuous Galerkin for Seismic Inversion (Sandia).
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Numerical simulation of wave propagation

Many procedures require accurately and efficiently solving hyperbolic
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Numerical simulation of wave propagation

Many procedures require accurately and efficiently solving hyperbolic
partial differential equations (PDEs) in realistic settings.

m Seismic and medical imaging

m Engineering design

m Computational fluids & | 9 -

Per-Olof Persson, http://persson.berkeley.edu/research.html.
Guo (CAAM) November 11, 2020 2 /34
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Figure courtesy of Axel Modave.
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(tetrahedral)

meshes for geometric flexibility.

m Unstructured
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Discontinuous Galerkin (DG) methods for waves

m Unstructured (tetrahedral)
meshes for geometric flexibility.

m High order: low numerical
dissipation and dispersion.

Fine linear approximation.

Guo (CAAM) November 11, 2020 3 /34



Discontinuous Galerkin (DG) methods for waves

m Unstructured (tetrahedral)
meshes for geometric flexibility.

m High order: low numerical
dissipation and dispersion.

T 05 0 05 1

Coarse quadratic approximation.
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Discontinuous Galerkin (DG) methods for waves

m Unstructured (tetrahedral)
meshes for geometric flexibility.

m High order: low numerical
dissipation and dispersion.

m High order approximations:
more accurate per unknown.

Guo (CAAM)
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Discontinuous Galerkin methods

Discontinuous Galerkin (DG) methods:
m Piecewise polynomial approximation.

m Weak continuity across faces.

m Continuous PDE (example: advection)

du Ou

ot~ Ox
m DG local strong form over D, with numerical flux f*.
ou
p, Ot

@
Dy 8X

o= ¢+/8Dn-(f*—f(u))¢, 0o eV
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Discontinuous Galerkin methods

Discontinuous Galerkin (DG) methods:
m Piecewise polynomial approximation.

m Weak continuity across faces.

DG yields system of ODEs

du
Mqg— = Au.
qr — M

100

DG mass matrix decouples across elements,
inter-element coupling only through A.

120

140

160

0 50 100 150
nz = 2475
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Time-domain nodal DG methods

Assume u(x,t) = > u;jp;(x) on D*

Mesh courtesy of J.F. Remacle

ou Ou

ot~ Ox

Example: advection equation.
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Time-domain nodal DG methods

Assume u(x,t) = > u;jp;(x) on D*

m Compute numerical flux at face
nodes (non-local).

du

s = Dyu + Z L (flux).

faces

Guo (CAAM) November 11, 2020 5/ 34



Time-domain nodal DG methods

Assume u(x,t) = > u;jp;(x) on D*

m Compute numerical flux at face
nodes (non-local).

m Compute RHS of (local) ODE.

du
—= D + Z Ls (flux).
dt ~—
Volume kernel faces M’J - / ¢J ¢’
Surface kernel Lf _ 1Mf
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Time-domain nodal DG methods

Assume u(x,t) = > u;jp;(x) on D*

m Compute numerical flux at face
nodes (non-local).

m Compute RHS of (local) ODE.

m Evolve (local) solution using explicit
time integration (RK, AB, etc).

du
— = D.u + Ls (flux).
o a3 L ()
u d\t’k/ | Volume kernel faces 1
ate kerne —— _
P Surface kernel Lf Mf
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Weight-adjusted DG (WADG): high order heterogeneous media

Weight-adjusted DG (WADG): high order heterogeneous media

Arbitrary Lagrangian-Eulerian DG: moving meshes
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Weight-adjusted DG (WADG): high order heterogeneous media

Outline

Weight-adjusted DG (WADG): high order heterogeneous media
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Weight-adjusted DG (WADG): high order heterogeneous media

Energy stable discontinuous Galerkin formulations

m Model problem: acoustic wave equation (pressure-velocity system)

Guo (CAAM) November 11, 2020 6 /34



Weight-adjusted DG (WADG): high order heterogeneous media

Energy stable discontinuous Galerkin formulations

m Model problem: acoustic wave equation (pressure-velocity system)
ou

ot Vp-

m Jumps of solutions:

[Pl=p"—p. [u]l=v"—u
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Weight-adjusted DG (WADG): high order heterogeneous media

Energy stable discontinuous Galerkin formulations

m Model problem: acoustic wave equation (pressure—velocity system)

ot _VP

m Jumps of solutions:

[Pl =p"—p, [u]=u"—
m Local formulation

/kc12g[t) / Voug+ 3 / ([u] - n+ 7[p])a,

1
/m at’ "~ Dkvf""+2/8Dk([[P]]+TUI[U]]~n)v.
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Weight-adjusted DG (WADG): high order heterogeneous media

Energy stable discontinuous Galerkin formulations

m Model problem: acoustic wave equation (pressure-velocity system)

2o 8t_vP

m Jumps of solutions:

[Pl=p"—p, [ul=u"-

m Local formulation

/kc12g[t) / Voug+ 3 / ([u] - n+ 7[p])a,

1
/m at’ "~ Dkvf""+2/8Dk([[P]]+TUI[U]]~n)v.

m High order accuracy, semi-discrete energy stability

Guo (CAAM) November 11, 2020
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Weight-adjusted DG (WADG): high order heterogeneous media

High order approximation of smoothly varying media

(a) Mesh and exact ¢ (b) Piecewise const. ¢? (c) High order c?

m Piecewise const. ¢?: energy stable and efficient, but inaccurate.

1 0Op Jdu

— 24 V.u=0, et

c?(x) ot * ot

m High order wavespeeds: weighted mass matrices. Stable, but
expensive (pre-computation + storage of matrix inverses)!

+Vp=0.

d 1
Ml/C2d_,; = ApU, (Ml/cz);j = /Dk m(bj(x)(b’(x)

Guo (CAAM) November 11, 2020 7 /34



Weight-adjusted DG (WADG): high order heterogeneous media

Weight-adjusted DG (WADG)

m Weight-adjusted DG: provably energy stable approx. of My .

dp

Ml/&&

d
~ M(MC2)71 M£ = AhU.

m New evaluation reuses implementation for constant wavespeed

dp

= M1 (M) M~ AU
dt —_—— —_———

modified update  constant wavespeed RHS

m Low storage matrix-free application of M~!M_. using
quadrature-based interpolation and L2 projection matrices Vy, Pq.

(M)"' M. = M1V W diag (?) V.
N —’

Pq

Chan, Hewett, Warburton (2017). Weight-adjusted DG methods: wave propagation in heterogeneous media.
Guo (CAAM) November 11, 2020 8 /34



Weight-adjusted DG (WADG): high order heterogeneous media

WADG: nearly identical to DG w/weighted mass matrices

(a) E(x,y) (b) Standard DG

Figure: Standard vs. weight-adjusted DG with spatially varying c?.

m The L? error is O(hN*1), but the difference between the DG and
WADG solutions is O(hV+2)!

Chan, Hewett, Warburton (2017). Weight-adjusted DG methods: wave propagation in heterogeneous media.
Guo (CAAM) November 11, 2020 9/
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Weight-adjusted DG (WADG): high order heterogeneous media

WADG: nearly identical to DG w/weighted mass matrices

(a) A(x,y) (b) Weighted-adjusted DG

Figure: Standard vs. weight-adjusted DG with spatially varying c?.

m The L? error is O(hN*1), but the difference between the DG and
WADG solutions is O(hV+2)!

Chan, Hewett, Warburton (2017). Weight-adjusted DG methods: wave propagation in heterogeneous media.
Guo (CAAM) November 11, 2020 9/
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Weight-adjusted DG (WADG): high order heterogeneous media

WADG: more efficient than storing M171c2 on GPUs

N=1|N=2|N=3 | N=4 | N=5|N=6|N=7
DG .66 2.79 9.90 29.4 73.9 1705 | 329.4

WADG 0.59 1.44 4.30 13.9 43.0 107.8 | 227.7

Speedup 1.11 1.94 2.30 2.16 1.72 1.58 1.45

Time (ns) per element: storing/applying Ml_/lc2 vs WADG (deg. 2N quadrature).
Standard DG

N

[Efﬁciency on GPUs: reduce memory accesses and data movement!]

Guo (CAAM) November 11, 2020 10 / 34



Weight-adjusted DG (WADG): high order heterogeneous media

WADG: more efficient than storing M171c2 on GPUs
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[Efﬁciency on GPUs: reduce memory accesses and data movement!]
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Arbitrary Lagrangian-Eulerian DG: moving meshes

Outline

Arbitrary Lagrangian-Eulerian DG: moving meshes
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Arbitrary Lagrangian-Eulerian DG: moving meshes

Efficient way to capture domain movement

{
{0

i,

i} l‘},
i
it

Figure: Rotating bar: an example of a moving domain

[Simulations on moving domains require moving mesh methods.]

https://openfoam.org/release/2-3-0/mesh-motion/
Guo (CAAM) November 11, 2020 11




Arbitrary Lagrangian-Eulerian DG: moving meshes

Arbitrary Lagrangian-Eulerian (ALE) framework

[ALE combines advantages of Lagrangian and Eulerian formulations. ]

m Eulerian methods: mesh
fixed in space

Q Material point

Particle motion

A\ Mesh node === Mesh motion

Eulerian description

Guo (CAAM) November 11, 2020 12 / 34



Arbitrary Lagrangian-Eulerian DG: moving meshes

Arbitrary Lagrangian-Eulerian (ALE) framework

[ALE combines advantages of Lagrangian and Eulerian formulations. ]

m Lagrangian methods: mesh
must be evolved along with v?
the solution
O Material point Particle motion
A\ Mesh node === Mesh motion

Lagrangian description

Guo (CAAM) November 11, 2020 12 / 34



Arbitrary Lagrangian-Eulerian DG: moving meshes

Arbitrary Lagrangian-Eulerian (ALE) framework

[ALE combines advantages of Lagrangian and Eulerian formulations. ]

¢ O
O Material point —— Particle motion
A\ Mesh node === Mesh motion
m ALE methods: mesh can
Arbitrary Lagrangian-Eulerian description

move arbitrarily

November 11, 2020 12 / 34
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Arbitrary Lagrangian-Eulerian DG: moving meshes

ALE transformation

T '/' ------ ¢
i t | i Z2

&1 o

m ALE tranformation:
g 0 o¢; 0
ot aﬂLzJ_: dt &’

8 85‘1 -
_ ~1,2.
Ix; Z ox; 0

Guo (CAAM) November 11, 2020 13 / 34



Arbitrary Lagrangian-Eulerian DG: moving meshes

ALE formulation of a conservation law

m Conservation law on the moving physical domain:

dq

s +V-f=0

m Conservation law on the stationary reference domain:

qu o0& 0qJ o0& 0Jf
Z ot g ZZ ox 0

[ Additional geometric conservation law: % +V- (Jxz) = 0. J

Guo (CAAM) November 11, 2020

14 / 34



Arbitrary Lagrangian-Eulerian DG: moving meshes

Energy stable skew-

m Constant solution on a moving mesh:

ou
E—O.

Guo (CAAM) November 11, 2020 15 / 34



Arbitrary Lagrangian-Eulerian DG: moving meshes

Energy stable skew-symmetric ALE-DG

m Constant solution on a moving mesh:

ou

— =0.

ot

m ALE system on a stationary reference mesh:
oul o "
R4 9 (udx) =0,
or
o = , .
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Arbitrary Lagrangian-Eulerian DG: moving meshes

Energy stable skew-symmetric ALE-DG

m Constant solution on a moving mesh:

ou

— =0.

ot

m ALE system on a stationary reference mesh:
oul o "
R4 9 (udx) =0,
or
o = , .

m ALE-DG formulation:
ouJ = ~
<87—7 V> + (V . (UJXt) s V)
aJ ~ "
<87” W) + (V . (JXt) y W> =0.

Guo (CAAM) November 11, 2020 15 / 34
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Arbitrary Lagrangian-Eulerian DG: moving meshes

Energy stable skew-symmetric ALE-DG

m Constant solution on a moving mesh:

ou

— =0.

ot

m ALE system on a stationary reference mesh:
oul o "
R4 9 (udx) =0,
or
o = , .

m ALE-DG formulation:
oul ~ "
<87—7 V> + (V . (UJXt) s V)
aJ ~ "
<87” W) + (V . (JXt) y W> =0.

Guo (CAAM) November 11, 2020 15 / 34
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Arbitrary Lagrangian-Eulerian DG: moving meshes

Energy stable skew-symmetric ALE-DG

m Skew-symmetric ALE-DG formulation:

(5.6 00

%{ (V- (=), v) + (n-ut, SRev) — (0,9 (J2e0)) } =0,

(gi,w> + (ﬁ-uyt),w) —0.

Guo (CAAM) November 11, 2020 16 / 34



Arbitrary Lagrangian-Eulerian DG: moving meshes

Energy stable skew-symmetric ALE-DG

m Skew-symmetric ALE-DG formulation:

(5 +3(5-0ma)
+1{ (V- (=), v) + (n-ut SR = (0,9 (J2e)) } =0,

2 (gi,w> + (ﬁ-uyt),w) —0.
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Arbitrary Lagrangian-Eulerian DG: moving meshes

Energy stable skew-symmetric ALE-DG

m Skew-symmetric ALE-DG formulation:

(85;:], v) + % (@ - (Ixt) u, v)

+%{ (V- @z, v) + (0wt Jzew) = (0,9 () } =0,
(gi, W> + (9 (=).w) =o.

m Skew-symmetric term:

S(u,v) = Z %{ <§ (udx), v) +{n-ut, Jxv) — (u,% . (J)?tv))}

Guo (CAAM) November 11, 2020 16 / 34



Arbitrary Lagrangian-Eulerian DG: moving meshes

Energy stable skew-symmetric ALE-DG

m Skew-symmetric ALE-DG formulation:

(85;:], v) + % (@ - (Ixt) u, v)

+%{ (V- @z, v) + (0wt Jzew) = (0,9 () } =0,
(gi, W> + (9 (=).w) =o.

m Skew-symmetric term:

S(u,u) = Z %{(@ (udxy) , u) +{n-ut, Jxeu) — (u,@ : (J)?tu))}

Guo (CAAM) November 11, 2020 16 / 34



Arbitrary Lagrangian-Eulerian DG: moving meshes

Energy conservation (DG)

m In DG methods, solution u is related to uJ through:

(u,v)) = (ud,v) <= Myu=M(u)) < u= Mle(uJ)

Guo (CAAM) November 11, 2020 17 / 34



Arbitrary Lagrangian-Eulerian DG: moving meshes

Energy conservation (DG)

m In DG methods, solution u is related to uJ through:
(u,v)) = (ud,v) <= Myu=M(u)) < u= Mle(uJ)

m Summing over elements:

Z(a’” >+Z (v (thuv>—|—5(u V) =0,
S (Grw) + X (9050 .w) =o.

Guo (CAAM) November 11, 2020 17 / 34



Arbitrary Lagrangian-Eulerian DG: moving meshes

Energy conservation (DG)

m In DG methods, solution u is related to uJ through:
(u,v)) = (ud,v) <= Myu=M(u)) < u= Mle(uJ)

m Summing over elements:

Z(a“ >+Z (V- (UR)u,u) +5 (u,0) =0,
> (ZJ Ml <u2>> Y (6 (%) 5 (f)) o
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Arbitrary Lagrangian-Eulerian DG: moving meshes

Energy conservation (DG)

m In DG methods, solution u is related to uJ through:
(u,v)) = (ud,v) <= Myu=M(u)) < u= Mle(uJ)

= Summing over elements:
Z <8uJ ) n Z ( (%) )
>3 <gJ ) +> 5 ( (J%), M () ) = 0.

0,

Guo (CAAM) November 11, 2020 17 / 34



Arbitrary Lagrangian-Eulerian DG: moving meshes

Energy conservation (DG)

m In DG methods, solution u is related to uJ through:
(u,v)) = (ud,v) <= Myu=M(u)) < u= Mle(uJ)

= Summing over elements:
Z(auJ )"’Z ( (%) )
55 (5o (@) + X5 (% 0. ()

m L2 projection preserves polynomial moments:

55 () + X5 (5 0m).7) o

0,

0.
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Arbitrary Lagrangian-Eulerian DG: moving meshes

Energy conservation (DG)

m In DG methods, solution u is related to uJ through:
(u,v)) = (ud,v) <= Myu=M(u)) < u= Mle(uJ)

= Summing over elements:
Z(auJ )"’Z ( (%) )
55 (5o (@) + X5 (% 0. ()

m L2 projection preserves polynomial moments:

55 () + X5 (5 0m).7) o
m Subtracting these two equations gives

10 p=td
207" T 2dr

0,

0.

v’ =0.
h

Guo (CAAM) November 11, 2020 17 / 34



Arbitrary Lagrangian-Eulerian DG: moving meshes

Energy conservation (WADG)

m In DG methods:

u= M]lM(uJ) = (u,vJ) = (ud,v)

Guo (CAAM) November 11, 2020 18 / 34



Arbitrary Lagrangian-Eulerian DG: moving meshes

Energy conservation (WADG)

m In DG methods:
u=M;*M(u)) = (u,vJ) = (ul,v)
m In WADG methods:

u= MflMl/JMflM(uJ) — (u,v) = <UJJ, v)

Guo (CAAM) November 11, 2020 18 / 34



Arbitrary Lagrangian-Eulerian DG: moving meshes

Energy conservation (WADG)

m In DG methods:
u=M;*M(u)) = (u,vJ) = (ul,v)
m In WADG methods:

u= MflMl/JMflM(uJ) — (u,v) = <UJJ, v)

m Introduce intermediate variable i ¢ PN

u
J

o= u:I'INﬁ.
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Arbitrary Lagrangian-Eulerian DG: moving meshes

Energy conservation (WADG)

m In DG methods:
u=M;*M(u)) = (u,vJ) = (ul,v)
m In WADG methods:

u= MflMl/JMflM(uJ) — (u,v) = <UJJ, v)

m Introduce intermediate variable i ¢ PN

u
J

b= =  u=I[lyd.

m Take )
vV =u, WZEHN ([]2)

Guo (CAAM) November 11, 2020 18 / 34



Arbitrary Lagrangian-Eulerian DG: moving meshes

Energy conservation

Theorem (Standard DG)

The skew-symmetric ALE-DG formulation using the standard DG method
is energy conservative in the sense that

10
ol =0 = |lu( )3~ llu(,0)[B] =o.

Theorem (WADG)

The skew-symmetric ALE-DG formulation using the WADG method has
an upper bound for the energy variation given by

[l TY IR = 11t (0 13| < cr22,

for fixed T and sufficiently regular solution u(x,t).

Guo (CAAM) November 11, 2020 19 / 34



Arbitrary Lagrangian-Eulerian DG: moving meshes

ALE-DG for wave propagation

m ALE system of the acoustic wave equation:

dqJ 0 , .1 0 .o
99° . 9 (a 2 (A%q) =0,
ar T o A9 T a5 19
oJ = N
E—FV(JXt):O,
where
o o o o€ a¢ o¢
Gid gd Gk ) ol el
Al— %) 9%, A2 =%, 9%, |
Ox1 ot ’ Ox1 ot
Y B o

Guo (CAAM) November 11, 2020 20 / 34



Arbitrary Lagrangian-Eulerian DG: moving meshes

ALE-DG for wave propagation

m Skew-symmetric ALE-DG formulation:

dqgJ 1 0 1 0
(G w) =3 (5 Wa)w) + 5 (0.5 (4w
0

where A, = Al + A?hy and n = (A1, Mp) is the reference domain
normal.

Guo (CAAM) November 11, 2020 21/ 34



Arbitrary Lagrangian-Eulerian DG: moving meshes

Dissipative penalty fluxes

m Motivated by the surface contribution (g*, A,w)

g =q" — 1A [q].

m When mesh reduces to the stationary case

JXe-n nJ noJ 0 m m
An = n1J J?t - n 0 = n 0 0
noJ 0 Xt - n n 0 0

m Flux g* reduces to the standard penalty flux on a fixed domain:

p*=p" —7,[u] - n, u* =ut —1,[p]n.

Theorem (Consistency)

The skew-symmetric ALE-DG formulation with penalty fluxes is consistent
for sufficiently regular velocity.

Guo (CAAM) November 11, 2020 22 / 34



Arbitrary Lagrangian-Eulerian DG: moving meshes

Dissipative penalty fluxes

Theorem (Energy stability using DG methods)

The skew-symmetric ALE-DG formulation with penalty fluxes using DG
method is energy stable in the following sense

10

59, (I1pI15 + llul3 +1IvI13) = —m4lq] " A7 Anla] < O.

\

Theorem (Energy stability using WADG methods)

The skew-symmetric ALE-DG formulation with penalty fluxes using WADG
method is energy stable up to a term which super-converges to zero in the
following sense

19
20T

(11PJ1 s+ a1+ 11 ) < Conanh®™*2 = 7lal” AT Anlall

v

Guo (CAAM) November 11, 2020 23 / 34



Arbitrary Lagrangian-Eulerian DG: moving meshes

Constant solutions on a moving mesh

1D constant solution

1071 | 1
1076 - 1
w
<
10—11 - |
10-16 \ \ \ \
10—0.8 10—0.6 10—044 10—0.2 100
Mesh size h

Figure: Energy variation for different orders of approximation

( Bound on AE for ALE-WADG: AE < Ch2N-+2 |

Guo (CAAM) November 11, 2020 24 / 34



Arbitrary Lagrangian-Eulerian DG: moving meshes

Constant solutions on a moving mesh

2D constant solution

10-t |

1075 | |
w
<

10—11 - |

10716

10—1.2 10—1 10—0.8 10—0.6 10—044
Mesh size h

Figure: Energy variation for different orders of approximation

( Bound on AE for ALE-WADG: AE < Ch2N-+2 |
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Arbitrary Lagrangian-Eulerian DG: moving meshes

Energy conservation for the wave equation

Central flux (r4 = 0)

T T T
107! [ o wapc N =2 .
—6— WADG N =3
1076 | n
w
<
10711 - -
10-16 ! ! ! ! !
10—12 10—1 10—0.8 10—0.6 10—0.4
Mesh size h

Figure: Energy variation for different orders of approximation

( Bound on AE for ALE-WADG: AE < Ch2N+2 |

Guo (CAAM) November 11, 2020 25 / 34



Arbitrary Lagrangian-Eulerian DG: moving meshes

Energy conservation for the wave equation

Penalty flux (74 = 1)

T T
1071 |- .
oo —=14.66 |
W —5.87
<
10-11 |- —18.47 —o— WADGN =2 | |
— 6 WADG N =3
— A WADG N = 4
~g- DGN=2
10-16 ! ! ! ! T

10—12 10—1 10—0.8 10—0.6 10—0.4
Mesh size h

Figure: Energy variation for different orders of approximation

[ Dissipative term dominates change in energy}

Guo (CAAM) November 11, 2020 25 / 34



Arbitrary Lagrangian-Eulerian DG: moving meshes

Energy investigation on discontinuous solutions

m Bound on AE does not hold for less regular solutions.

m We numerically investigate WADG for less regular solutions by
considering the wave equation with discontinuous initial conditions.

AN
NN

(a) 1D

Guo (CAAM) November 11, 2020 26 / 34



Arbitrary Lagrangian-Eulerian DG: moving meshes

Energy investigation on discontinuous solutions

1D wave (central flux)

100 T T T
—6— WADG N =2
—6— WADG N =3
—A— WADG N = 4
10—4 [ |—/=— DGN=2

w
< —— 3
1078 - .
10—12 10—1 10—0.8 10—0.6 10—0.4
Mesh size h

Figure: Energy variation for different orders of approximation
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Arbitrary Lagrangian-Eulerian DG: moving meshes

Energy investigation on discontinuous solutions

2D wave (central flux)
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Figure: Energy variation for different orders of approximation
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Arbitrary Lagrangian-Eulerian DG: moving meshes

Energy investigation on discontinuous solutions

1D wave (penalty flux)
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Figure: Energy variation for different orders of approximation
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Arbitrary Lagrangian-Eulerian DG: moving meshes

Energy investigation on discontinuous solutions

2D wave (penalty flux)
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Figure: Energy variation for different orders of approximation
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Arbitrary Lagrangian-Eulerian DG: moving meshes

Energy investigation on discontinuous solutions

(b) DG (penalty flux)

(c) WADG (central flux) (d) WADG (penalty flux)
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Arbitrary Lagrangian-Eulerian DG: moving meshes

Convergence for the wave equation
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Figure: Convergence of L2 errors for the acoustic wave solution
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Arbitrary Lagrangian-Eulerian DG: moving meshes

Gaussian pulse propagates on a moving mesh

(a) Moving mesh (b) Stationary mesh
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Arbitrary Lagrangian-Eulerian DG: moving meshes

Extension to B-spline bases

m WADG using B-spline bases:

m B-splines form the foundations for isogeometric analysis

m WADG recovers Kronecker structure for B-spline operators, enables
efficient isogeometric analysis using explicit time-stepping

(c) d) N

N=1 ( =2 (e) N=3

05

Figure: B-spline bases of different degrees
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Arbitrary Lagrangian-Eulerian DG: moving meshes

Energy conservation for the wave equation (B-spline)

AE

1079 |-

10— 15 10—15

Mesh size h Mesh size h
(a) Central flux (1 = 0) (b) Penalty flux (1 = 1)

Figure: Energy variation for the acoustic wave solution
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Arbitrary Lagrangian-Eulerian DG: moving meshes

Convergence for the wave equation (B-spline)

101!

101

5 ol l
i =1 3.2
U
—o—N=2
—x—N=3
10-7 | —%—N=4 I
! !
10713 107!
Mesh size h Mesh size h

(a) Central flux (r4 = 0) (b) Penalty flux (14 = 1)

Figure: Convergence of L2 errors for the acoustic wave solution
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Arbitrary Lagrangian-Eulerian DG: moving meshes

Summary and acknowledgements

m We derive an ALE-DG method for wave propagation on moving
curved meshes.

m Energy stability up to a term which converges to zero with the same
rate as the optimal L? error estimate.

m The proposed method can be applied without restrictions on element
type, quadrature, or choice of local approximation space.

Thank you! Questions?

Chan, Hewett, Warburton. 2016. WADG methods: wave propagation in heterogeneous media (SISC).
Guo, Chan. 2020. High order WADG methods for wave propagation on moving curved meshes.
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