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Numerical simulation of wave propagation

Many procedures require accurately and efficiently solving hyperbolic
partial differential equations (PDEs) in realistic settings.

Seismic and medical imaging

Engineering design

Computational fluids

S. Scott Collis et al. Unstructured Discontinuous Galerkin for Seismic Inversion (Sandia).
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Numerical simulation of wave propagation

Many procedures require accurately and efficiently solving hyperbolic
partial differential equations (PDEs) in realistic settings.

Seismic and medical imaging

Engineering design

Computational fluids
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Discontinuous Galerkin (DG) methods for waves

Unstructured (tetrahedral)
meshes for geometric flexibility.

High order: low numerical
dissipation and dispersion.

High order approximations:
more accurate per unknown.

Figure courtesy of Axel Modave.
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Discontinuous Galerkin (DG) methods for waves

Unstructured (tetrahedral)
meshes for geometric flexibility.

High order: low numerical
dissipation and dispersion.

High order approximations:
more accurate per unknown.

Max errors vs. dofs.
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Discontinuous Galerkin methods

Discontinuous Galerkin (DG) methods:

Piecewise polynomial approximation.

Weak continuity across faces.

Continuous PDE (example: advection)

∂u

∂t
=
∂u

∂x

DG local strong form over Dk with numerical flux f ∗.∫
Dk

∂u

∂t
φ =

∫
Dk

∂u

∂x
φ+

∫
∂Dk

n · (f ∗ − f (u))φ, u, φ ∈ Vh
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Discontinuous Galerkin methods

Discontinuous Galerkin (DG) methods:

Piecewise polynomial approximation.

Weak continuity across faces.

DG yields system of ODEs

MΩ
du

dt
= Au.

DG mass matrix decouples across elements,
inter-element coupling only through A.
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Time-domain nodal DG methods

Assume u(x , t) =
∑

ujφj(x) on Dk

Compute numerical flux at face
nodes (non-local).

Compute RHS of (local) ODE.

Evolve (local) solution using explicit
time integration (RK, AB, etc).

Mesh courtesy of J.F. Remacle

∂u

∂t
=
∂u

∂x

Example: advection equation.

Mij =

∫
Dk

φj(x)φi (x)

Lf = M−1Mf .
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Weight-adjusted DG (WADG): high order heterogeneous media

Outline
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2 Arbitrary Lagrangian-Eulerian DG: moving meshes

Guo (CAAM) November 11, 2020 5 / 34



Weight-adjusted DG (WADG): high order heterogeneous media

Outline

1 Weight-adjusted DG (WADG): high order heterogeneous media

2 Arbitrary Lagrangian-Eulerian DG: moving meshes

Guo (CAAM) November 11, 2020 5 / 34



Weight-adjusted DG (WADG): high order heterogeneous media

Energy stable discontinuous Galerkin formulations

Model problem: acoustic wave equation (pressure-velocity system)

1

c2

∂p

∂t
= ∇ · u, ∂u

∂t
= ∇p.

Jumps of solutions:

[[p]] = p+ − p, [[u]] = u+ − u.

Local formulation∫
Dk

1

c2

∂p

∂t
q =

∫
Dk

∇ · uq +
1

2

∫
∂Dk

([[u]] · n + τp[[p]])q,∫
Dk

∂u
∂t

v =

∫
Dk

∇p · v +
1

2

∫
∂Dk

([[p]] + τu[[u]] · n)v .

High order accuracy, semi-discrete energy stability

∂

∂t

(∑
k

∫
Dk

p2

c2
+ |u|2

)
= −

∑
k

∫
∂Dk

τp [[p]]2 + τu [[u · n]]2 ≤ 0.
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Weight-adjusted DG (WADG): high order heterogeneous media

High order approximation of smoothly varying media

(a) Mesh and exact c2 (b) Piecewise const. c2 (c) High order c2

Piecewise const. c2: energy stable and efficient, but inaccurate.

1

c2(x)

∂p

∂t
+∇ · u = 0,

∂u
∂t

+∇p = 0.

High order wavespeeds: weighted mass matrices. Stable, but
expensive (pre-computation + storage of matrix inverses)!

M1/c2
dp
dt

= AhU ,
(
M1/c2

)
ij

=

∫
Dk

1

c2(x)
φj(x)φi (x).
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Weight-adjusted DG (WADG): high order heterogeneous media

Weight-adjusted DG (WADG)

Weight-adjusted DG: provably energy stable approx. of M1/c2

M1/c2
dp
dt
≈M (Mc2)−1 M

dp
dt

= AhU .

New evaluation reuses implementation for constant wavespeed

dp
dt

= M−1 (Mc2)︸ ︷︷ ︸
modified update

M−1AhU︸ ︷︷ ︸
constant wavespeed RHS

Low storage matrix-free application of M−1Mc2 using
quadrature-based interpolation and L2 projection matrices Vq,Pq.

(M)−1 Mc2 = M−1V T
q W︸ ︷︷ ︸

Pq

diag
(
c2
)
Vq.

Chan, Hewett, Warburton (2017). Weight-adjusted DG methods: wave propagation in heterogeneous media.
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Weight-adjusted DG (WADG): high order heterogeneous media

WADG: nearly identical to DG w/weighted mass matrices

(a) c2(x , y) (b) Standard DG

Figure: Standard vs. weight-adjusted DG with spatially varying c2.

The L2 error is O(hN+1), but the difference between the DG and
WADG solutions is O(hN+2)!

Chan, Hewett, Warburton (2017). Weight-adjusted DG methods: wave propagation in heterogeneous media.
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Weight-adjusted DG (WADG): high order heterogeneous media

WADG: more efficient than storing M−1
1/c2 on GPUs

N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7

DG .66 2.79 9.90 29.4 73.9 170.5 329.4

WADG 0.59 1.44 4.30 13.9 43.0 107.8 227.7

Speedup 1.11 1.94 2.30 2.16 1.72 1.58 1.45

Time (ns) per element: storing/applying M−1
1/c2 vs WADG (deg. 2N quadrature).

�� ��Efficiency on GPUs: reduce memory accesses and data movement!
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Arbitrary Lagrangian-Eulerian DG: moving meshes
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Arbitrary Lagrangian-Eulerian DG: moving meshes

Efficient way to capture domain movement

Figure: Rotating bar: an example of a moving domain

�� ��Simulations on moving domains require moving mesh methods.

https://openfoam.org/release/2-3-0/mesh-motion/
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Arbitrary Lagrangian-Eulerian DG: moving meshes

Arbitrary Lagrangian-Eulerian (ALE) framework

�� ��ALE combines advantages of Lagrangian and Eulerian formulations.

Eulerian methods: mesh
fixed in space

Lagrangian methods: mesh
must be evolved along with
the solution

ALE methods: mesh can
move arbitrarily Eulerian description
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Arbitrary Lagrangian-Eulerian DG: moving meshes

ALE transformation

ALE tranformation:

∂

∂t
=

∂

∂τ
+
∑
j

∂ξj
∂t

∂

∂ξj
,

∂

∂xi
=
∑
j

∂ξj
∂xi

∂

∂ξj
, i = 1, 2.
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Arbitrary Lagrangian-Eulerian DG: moving meshes

ALE formulation of a conservation law

Conservation law on the moving physical domain:

dq
dt

+∇ · f = 0.

Conservation law on the stationary reference domain:

dqJ
dτ

+
∑
j

∂ξj
∂t

∂qJ
∂ξj

+
∑
i

∑
j

∂ξj
∂xi

∂Jfi
∂ξj

= 0.

�
�

�
�Additional geometric conservation law: ∂J

∂τ + ∇̂ · (Jx̂t) = 0.

Guo (CAAM) November 11, 2020 14 / 34



Arbitrary Lagrangian-Eulerian DG: moving meshes

Energy stable skew-symmetric ALE-DG

Constant solution on a moving mesh:

∂u

∂t
= 0.

ALE system on a stationary reference mesh:

∂uJ

∂τ
+ ∇̂ · (uJx̂t) = 0,

∂J

∂τ
+ ∇̂ · (Jx̂t) = 0.

ALE-DG formulation:

Guo (CAAM) November 11, 2020 15 / 34
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Arbitrary Lagrangian-Eulerian DG: moving meshes

Energy stable skew-symmetric ALE-DG

Skew-symmetric ALE-DG formulation:(
∂uJ

∂τ
, v

)
+

1

2

(
∇̂ · (Jx̂t) u, v

)
+

1

2

{(
∇̂ · (uJx̂t) , v

)
+ 〈n · u+, Jx̂tv〉 −

(
u, ∇̂ · (Jx̂tv)

)}
= 0,(

∂J

∂τ
,w

)
+
(
∇̂ · (Jx̂t) ,w

)
= 0.

Skew-symmetric term:
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Arbitrary Lagrangian-Eulerian DG: moving meshes

Energy conservation (DG)

In DG methods, solution u is related to uJ through:

(u, vJ) = (uJ, v) ⇐⇒ MJu = M (uJ) ⇐⇒ u = M−1
J M (uJ)

Summing over elements:

L2 projection preserves polynomial moments:∑ 1

2

(
∂J

∂τ
, u2

)
+
∑ 1

2

(
∇̂ · (Jx̂t) , u2

)
= 0.

Subtracting these two equations gives

1

2

∂

∂τ
||u||2J =

1

2

d

dτ

∫
Ωh

u2J = 0.
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J M (uJ)

Summing over elements:∑(
∂uJ

∂τ
, u

)
+
∑ 1

2

(
∇̂ · (Jx̂t) u, u

)
= 0,∑ 1

2

(
∂J

∂τ
,ΠN

(
u2
))

+
∑ 1

2

(
∇̂ · (Jx̂t) ,ΠN

(
u2
))

= 0.

L2 projection preserves polynomial moments:∑ 1

2

(
∂J

∂τ
, u2

)
+
∑ 1

2

(
∇̂ · (Jx̂t) , u2

)
= 0.

Subtracting these two equations gives

1

2

∂

∂τ
||u||2J =

1

2

d

dτ

∫
Ωh

u2J = 0.
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Energy conservation (WADG)

In DG methods:

u = M−1
J M (uJ) ⇐⇒ (u, vJ) = (uJ, v)

In WADG methods:

u = M−1M1/JM−1M (uJ) ⇐⇒ (u, v) =

(
uJ

J
, v

)
Introduce intermediate variable ũ /∈ PN

ũ =
uJ

J
=⇒ u = ΠN ũ.

Take

v = u, w =
1

2
ΠN

(
ũ2
)
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Arbitrary Lagrangian-Eulerian DG: moving meshes

Energy conservation

Theorem (Standard DG)

The skew-symmetric ALE-DG formulation using the standard DG method
is energy conservative in the sense that

1

2

∂

∂τ
||u||2J = 0. =⇒

∣∣∣||u (·,T ) ||2J − ||u (·, 0) ||2J
∣∣∣ = 0.

Theorem (WADG)

The skew-symmetric ALE-DG formulation using the WADG method has
an upper bound for the energy variation given by∣∣∣||uJ (·,T ) ||21/J − ||uJ (·, 0) ||21/J

∣∣∣ ≤ Ch2N+2,

for fixed T and sufficiently regular solution u(x , t).
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ALE-DG for wave propagation

ALE system of the acoustic wave equation:

dqJ
dτ

+
∂

∂ξ1

(
A1q

)
+

∂

∂ξ2

(
A2q

)
= 0,

∂J

∂τ
+ ∇̂ · (Jx̂t) = 0,

where

A1 =


∂ξ1
∂t J

∂ξ1
∂x1

J ∂ξ1
∂x2

J
∂ξ1
∂x1

J ∂ξ1
∂t J 0

∂ξ1
∂x2

J 0 ∂ξ1
∂t J

 , A2 =


∂ξ2
∂t J

∂ξ2
∂x1

J ∂ξ2
∂x2

J
∂ξ2
∂x1

J ∂ξ2
∂t J 0

∂ξ2
∂x2

J 0 ∂ξ2
∂t J

 .
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Arbitrary Lagrangian-Eulerian DG: moving meshes

ALE-DG for wave propagation

Skew-symmetric ALE-DG formulation:(
dqJ
dτ

,w
)

=− 1

2

(
∂

∂ξ1

(
A1q

)
,w
)

+
1

2

(
q,

∂

∂ξ1

(
A1w

))
− 1

2

(
∂

∂ξ2

(
A2q

)
,w
)

+
1

2

(
q,

∂

∂ξ2

(
A2w

))
− 1

2

((
∂

∂ξ1
A1

)
q,w

)
− 1

2

((
∂

∂ξ2
A2

)
q,w

)
− 1

2
〈q∗,Anw〉 ,(

∂J

dτ
, θ

)
=−

(
∇̂ · (Jx̂t) , θ

)
.

where An = A1n̂1 + A2n̂2 and n̂ = (n̂1, n̂2) is the reference domain
normal.
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Arbitrary Lagrangian-Eulerian DG: moving meshes

Dissipative penalty fluxes

Motivated by the surface contribution 〈q∗,Anw〉

q∗ = q+ − τqAn [[q]] .

When mesh reduces to the stationary case

An =

Jx̂t · n n1J n2J
n1J Jx̂t · n 0
n2J 0 Jx̂t · n

 =

 0 n1 n2

n1 0 0
n2 0 0


Flux q∗ reduces to the standard penalty flux on a fixed domain:

p∗ = p+ − τu[[u]] · n, u∗ = u+ − τp[[p]]n.

Theorem (Consistency)

The skew-symmetric ALE-DG formulation with penalty fluxes is consistent
for sufficiently regular velocity.
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Arbitrary Lagrangian-Eulerian DG: moving meshes

Dissipative penalty fluxes

Theorem (Energy stability using DG methods)

The skew-symmetric ALE-DG formulation with penalty fluxes using DG
method is energy stable in the following sense

1

2

∂

∂τ

(
||p||2J + ||u||2J + ||v ||2J

)
= −τq[[q]]TAT

n An[[q]] ≤ 0.

Theorem (Energy stability using WADG methods)

The skew-symmetric ALE-DG formulation with penalty fluxes using WADG
method is energy stable up to a term which super-converges to zero in the
following sense

1

2

∂

∂τ

(
||pJ||21/J + ||uJ||21/J + ||vJ||21/J

)
≤ Cmaxh

2N+2 − τq[[q]]TAT
n An[[q]].
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Constant solutions on a moving mesh
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Figure: Energy variation for different orders of approximation�� ��Bound on ∆E for ALE-WADG: ∆E ≤ Ch2N+2
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Energy conservation for the wave equation
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Figure: Energy variation for different orders of approximation�� ��Bound on ∆E for ALE-WADG: ∆E ≤ Ch2N+2

Guo (CAAM) November 11, 2020 25 / 34



Arbitrary Lagrangian-Eulerian DG: moving meshes

Energy conservation for the wave equation
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Figure: Energy variation for different orders of approximation�� ��Dissipative term dominates change in energy
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Energy investigation on discontinuous solutions

Bound on ∆E does not hold for less regular solutions.

We numerically investigate WADG for less regular solutions by
considering the wave equation with discontinuous initial conditions.

(a) 1D (b) 2D
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Energy investigation on discontinuous solutions
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Energy investigation on discontinuous solutions

(a) DG (central flux) (b) DG (penalty flux)

(c) WADG (central flux) (d) WADG (penalty flux)
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Convergence for the wave equation
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Figure: Convergence of L2 errors for the acoustic wave solution
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Gaussian pulse propagates on a moving mesh

(a) Moving mesh (b) Stationary mesh
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Arbitrary Lagrangian-Eulerian DG: moving meshes

Extension to B-spline bases

WADG using B-spline bases:

B-splines form the foundations for isogeometric analysis

WADG recovers Kronecker structure for B-spline operators, enables
efficient isogeometric analysis using explicit time-stepping

(c) N = 1 (d) N = 2 (e) N = 3

Figure: B-spline bases of different degrees
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Energy conservation for the wave equation (B-spline)
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Figure: Energy variation for the acoustic wave solution
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Convergence for the wave equation (B-spline)
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Figure: Convergence of L2 errors for the acoustic wave solution
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Summary and acknowledgements

We derive an ALE-DG method for wave propagation on moving
curved meshes.

Energy stability up to a term which converges to zero with the same
rate as the optimal L2 error estimate.

The proposed method can be applied without restrictions on element
type, quadrature, or choice of local approximation space.

Thank you! Questions?

Chan, Hewett, Warburton. 2016. WADG methods: wave propagation in heterogeneous media (SISC).

Guo, Chan. 2020. High order WADG methods for wave propagation on moving curved meshes.
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