Weight-adjusted Discontinuous Galerkin Methods on Moving Curved Meshes

Kaihang Guo

Department of Computational and Applied Mathematics Rice University

Numerical simulation of wave propagation

Many procedures require **accurately** and **efficiently** solving hyperbolic partial differential equations (PDEs) in realistic settings.

- Seismic and medical imaging
- Engineering design
- Computational fluids

S. Scott Collis et al. Unstructured Discontinuous Galerkin for Seismic Inversion (Sandia).

Numerical simulation of wave propagation

Many procedures require **accurately** and **efficiently** solving hyperbolic partial differential equations (PDEs) in realistic settings.

- Seismic and medical imaging
- Engineering design
- Computational fluids

https://www.comsol.com/model/image/12737/big.png

Numerical simulation of wave propagation

Many procedures require **accurately** and **efficiently** solving hyperbolic partial differential equations (PDEs) in realistic settings.

- Seismic and medical imaging
- Engineering design
- Computational fluids

 $Per-Olof\ Persson,\ http://persson.berkeley.edu/research.html.$

- Unstructured (tetrahedral) meshes for geometric flexibility.
- High order: low numerical dissipation and dispersion.
- High order approximations: more accurate per unknown

Figure courtesy of Axel Modave.

- Unstructured (tetrahedral) meshes for geometric flexibility.
- High order: low numerical dissipation and dispersion.
- High order approximations: more accurate per unknown.

Fine linear approximation.

- Unstructured (tetrahedral) meshes for geometric flexibility.
- High order: low numerical dissipation and dispersion.
- High order approximations: more accurate per unknown.

Coarse quadratic approximation.

- Unstructured (tetrahedral) meshes for geometric flexibility.
- High order: low numerical dissipation and dispersion.
- High order approximations: more accurate per unknown.

Max errors vs. dofs.

Discontinuous Galerkin methods

Discontinuous Galerkin (DG) methods:

- Piecewise polynomial approximation.
- Weak continuity across faces.

Continuous PDE (example: advection)

$$\frac{\partial u}{\partial t} = \frac{\partial u}{\partial x}$$

■ DG local strong form over D_k with numerical flux f^* .

$$\int_{D_h} \frac{\partial u}{\partial t} \phi = \int_{D_h} \frac{\partial u}{\partial x} \phi + \int_{\partial D_h} \mathbf{n} \cdot (\mathbf{f}^* - \mathbf{f}(u)) \phi, \qquad u, \phi \in V_h$$

Discontinuous Galerkin methods

Discontinuous Galerkin (DG) methods:

- Piecewise polynomial approximation.
- Weak continuity across faces.

DG yields system of ODEs

$$\mathbf{M}_{\Omega} \frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t} = \mathbf{A}\mathbf{u}.$$

DG mass matrix decouples across elements, inter-element coupling only through **A**.

Assume $u(\mathbf{x},t) = \sum \mathbf{u}_j \phi_j(\mathbf{x})$ on D^k

- Compute numerical flux at face nodes (non-local).
- Compute RHS of (local) ODE.
- Evolve (local) solution using explicit time integration (RK, AB, etc).

$$\frac{\partial u}{\partial t} = \frac{\partial u}{\partial x}$$

Example: advection equation.

Mesh courtesy of J.F. Remacle

$$\mathbf{M}_{ij} = \int_{D^k} \phi_j(\mathbf{x}) \phi_i(\mathbf{x})$$
$$\mathbf{L}_f = \mathbf{M}^{-1} \mathbf{M}_f.$$

Assume $u(\mathbf{x},t) = \sum \mathbf{u}_j \phi_j(\mathbf{x})$ on D^k

- Compute numerical flux at face nodes (non-local).
- Compute RHS of (local) ODE.
- Evolve (local) solution using explicit time integration (RK, AB, etc).

$$\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t} = \mathbf{D}_{x}\mathbf{u} + \sum_{\mathrm{faces}} \mathbf{L}_{f} \left(\mathrm{flux} \right).$$

$$egin{aligned} oldsymbol{M}_{ij} &= \int_{D^k} \phi_j(oldsymbol{x}) \phi_i(oldsymbol{x}) \ oldsymbol{\mathsf{L}}_f &= oldsymbol{\mathsf{M}}^{-1} oldsymbol{\mathsf{M}}_f. \end{aligned}$$

Assume $u(\mathbf{x},t) = \sum \mathbf{u}_j \phi_j(\mathbf{x})$ on D^k

- Compute numerical flux at face nodes (non-local).
- Compute RHS of (local) ODE.
- Evolve (local) solution using explicit time integration (RK, AB, etc).

$$\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t} = \underbrace{\mathbf{D}_{x}\mathbf{u}}_{\text{Volume kernel}} + \underbrace{\sum_{\text{faces}} \mathbf{L}_{f} \left(\text{flux}\right)}_{\text{Surface kernel}}.$$

$$egin{aligned} oldsymbol{M}_{ij} &= \int_{D^k} \phi_j(oldsymbol{x}) \phi_i(oldsymbol{x}) \ oldsymbol{\mathsf{L}}_f &= oldsymbol{\mathsf{M}}^{-1} oldsymbol{\mathsf{M}}_f. \end{aligned}$$

Assume $u(\mathbf{x},t) = \sum \mathbf{u}_j \phi_j(\mathbf{x})$ on D^k

- Compute numerical flux at face nodes (non-local).
- Compute RHS of (local) ODE.
- Evolve (local) solution using explicit time integration (RK, AB, etc).

$$\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t} = \mathbf{D}_{\mathbf{x}}\mathbf{u} + \sum_{\mathsf{faces}} \mathbf{L}_{f} \left(\mathsf{flux}\right).$$
Update kernel

$$egin{aligned} oldsymbol{M}_{ij} &= \int_{D^k} \phi_j(oldsymbol{x}) \phi_i(oldsymbol{x}) \ oldsymbol{\mathsf{L}}_f &= oldsymbol{\mathsf{M}}^{-1} oldsymbol{\mathsf{M}}_f. \end{aligned}$$

Outline

1 Weight-adjusted DG (WADG): high order heterogeneous media

2 Arbitrary Lagrangian-Eulerian DG: moving meshes

Outline

■ Weight-adjusted DG (WADG): high order heterogeneous media

2 Arbitrary Lagrangian-Eulerian DG: moving meshes

■ Model problem: acoustic wave equation (pressure-velocity system)

$$\frac{1}{c^2}\frac{\partial p}{\partial t} = \nabla \cdot \boldsymbol{u}, \qquad \frac{\partial \boldsymbol{u}}{\partial t} = \nabla p.$$

Jumps of solutions:

$$[\![p]\!] = p^+ - p, \qquad [\![u]\!] = u^+ - u.$$

Local formulation

$$\int_{D^k} \frac{1}{c^2} \frac{\partial p}{\partial t} q = \int_{D^k} \nabla \cdot \boldsymbol{u} q + \frac{1}{2} \int_{\partial D^k} ([\![\boldsymbol{u}]\!] \cdot \boldsymbol{n} + \tau_{\rho} [\![\boldsymbol{p}]\!]) q,$$

$$\int_{D^k} \frac{\partial \boldsymbol{u}}{\partial t} \boldsymbol{v} = \int_{D^k} \nabla p \cdot \boldsymbol{v} + \frac{1}{2} \int_{\partial D^k} ([\![\boldsymbol{p}]\!] + \tau_{u} [\![\boldsymbol{u}]\!] \cdot \boldsymbol{n}) \boldsymbol{v}.$$

High order accuracy, semi-discrete energy stability

$$\frac{\partial}{\partial t} \left(\sum_{k} \int_{D^k} \frac{p^2}{c^2} + |\boldsymbol{u}|^2 \right) = -\sum_{k} \int_{\partial D^k} \tau_p \, [\![\boldsymbol{p}]\!]^2 + \tau_u \, [\![\boldsymbol{u} \cdot \boldsymbol{n}]\!]^2 \leq 0.$$

Guo (CAAM) November 11, 2020

■ Model problem: acoustic wave equation (pressure-velocity system)

$$\frac{1}{c^2}\frac{\partial p}{\partial t} = \nabla \cdot \boldsymbol{u}, \qquad \frac{\partial \boldsymbol{u}}{\partial t} = \nabla p.$$

Jumps of solutions:

$$[\![p]\!] = p^+ - p, \qquad [\![u]\!] = u^+ - u.$$

Local formulation

$$\int_{D^k} \frac{1}{c^2} \frac{\partial p}{\partial t} q = \int_{D^k} \nabla \cdot \boldsymbol{u} q + \frac{1}{2} \int_{\partial D^k} (\boldsymbol{\llbracket \boldsymbol{u} \rrbracket} \cdot \boldsymbol{n} + \tau_p \boldsymbol{\llbracket p \rrbracket}) q,$$

$$\int_{D^k} \frac{\partial \boldsymbol{u}}{\partial t} \boldsymbol{v} = \int_{D^k} \nabla p \cdot \boldsymbol{v} + \frac{1}{2} \int_{\partial D^k} (\boldsymbol{\llbracket \boldsymbol{p} \rrbracket} + \tau_u \boldsymbol{\llbracket \boldsymbol{u} \rrbracket} \cdot \boldsymbol{n}) \boldsymbol{v}.$$

High order accuracy, semi-discrete energy stability

$$\frac{\partial}{\partial t} \left(\sum_{k} \int_{D^k} \frac{p^2}{c^2} + |\boldsymbol{u}|^2 \right) = -\sum_{k} \int_{\partial D^k} \tau_p \left[\! \left[\boldsymbol{p} \right] \! \right]^2 + \tau_u \left[\! \left[\boldsymbol{u} \cdot \boldsymbol{n} \right] \! \right]^2 \le 0.$$

Guo (CAAM) November 11, 2020

■ Model problem: acoustic wave equation (pressure-velocity system)

$$\frac{1}{c^2}\frac{\partial p}{\partial t} = \nabla \cdot \boldsymbol{u}, \qquad \frac{\partial \boldsymbol{u}}{\partial t} = \nabla p.$$

Jumps of solutions:

$$[\![p]\!] = p^+ - p, \qquad [\![u]\!] = u^+ - u.$$

Local formulation

$$\begin{split} \int_{D^k} \frac{1}{c^2} \frac{\partial p}{\partial t} q &= \int_{D^k} \nabla \cdot \boldsymbol{u} q + \frac{1}{2} \int_{\partial D^k} (\boldsymbol{\llbracket \boldsymbol{u} \rrbracket} \cdot \boldsymbol{n} + \tau_p \boldsymbol{\llbracket p \rrbracket}) q, \\ \int_{D^k} \frac{\partial \boldsymbol{u}}{\partial t} \boldsymbol{v} &= \int_{D^k} \nabla p \cdot \boldsymbol{v} + \frac{1}{2} \int_{\partial D^k} (\boldsymbol{\llbracket p \rrbracket} + \tau_u \boldsymbol{\llbracket \boldsymbol{u} \rrbracket} \cdot \boldsymbol{n}) \boldsymbol{v}. \end{split}$$

High order accuracy, semi-discrete energy stability

$$\frac{\partial}{\partial t} \left(\sum_{k} \int_{D^k} \frac{p^2}{c^2} + |\boldsymbol{u}|^2 \right) = -\sum_{k} \int_{\partial D^k} \tau_p \, [\![\boldsymbol{p}]\!]^2 + \tau_u \, [\![\boldsymbol{u} \cdot \boldsymbol{n}]\!]^2 \leq 0.$$

Guo (CAAM) November 11, 2020

■ Model problem: acoustic wave equation (pressure-velocity system)

$$\frac{1}{c^2} \frac{\partial p}{\partial t} = \nabla \cdot \boldsymbol{u}, \qquad \frac{\partial \boldsymbol{u}}{\partial t} = \nabla p.$$

Jumps of solutions:

$$[\![p]\!] = p^+ - p, \qquad [\![u]\!] = u^+ - u.$$

Local formulation

$$\begin{split} \int_{D^k} \frac{1}{c^2} \frac{\partial p}{\partial t} q &= \int_{D^k} \nabla \cdot \boldsymbol{u} q + \frac{1}{2} \int_{\partial D^k} (\boldsymbol{\llbracket \boldsymbol{u} \rrbracket} \cdot \boldsymbol{n} + \tau_p \boldsymbol{\llbracket p \rrbracket}) q, \\ \int_{D^k} \frac{\partial \boldsymbol{u}}{\partial t} \boldsymbol{v} &= \int_{D^k} \nabla p \cdot \boldsymbol{v} + \frac{1}{2} \int_{\partial D^k} (\boldsymbol{\llbracket p \rrbracket} + \tau_u \boldsymbol{\llbracket \boldsymbol{u} \rrbracket} \cdot \boldsymbol{n}) \boldsymbol{v}. \end{split}$$

■ High order accuracy, semi-discrete energy stability

$$\frac{\partial}{\partial t} \left(\sum_{k} \int_{D^k} \frac{p^2}{c^2} + |\boldsymbol{u}|^2 \right) = -\sum_{k} \int_{\partial D^k} \tau_p \left[\!\!\left[\boldsymbol{p} \right] \!\!\right]^2 + \tau_u \left[\!\!\left[\boldsymbol{u} \cdot \boldsymbol{n} \right] \!\!\right]^2 \le 0.$$

6 / 34

High order approximation of smoothly varying media

- (a) Mesh and exact c^2 (b) Piecewise const. c^2 (c) High order c^2

- Piecewise const. c^2 : energy stable and efficient, but inaccurate.

$$\frac{1}{c^2(\mathbf{x})}\frac{\partial p}{\partial t} + \nabla \cdot \mathbf{u} = 0, \qquad \frac{\partial \mathbf{u}}{\partial t} + \nabla p = 0.$$

High order wavespeeds: weighted mass matrices. Stable, but expensive (pre-computation + storage of matrix inverses)!

$$oldsymbol{M}_{1/c^2}rac{\mathrm{d}oldsymbol{p}}{\mathrm{d}t}=oldsymbol{A}_holdsymbol{U}, \qquad ig(oldsymbol{M}_{1/c^2}ig)_{ij}=\int_{D^k}rac{1}{c^2(oldsymbol{x})}\phi_j(oldsymbol{x})\phi_i(oldsymbol{x}).$$

Weight-adjusted DG (WADG)

lacktriangle Weight-adjusted DG: provably energy stable approx. of $oldsymbol{M}_{1/c^2}$

$$oldsymbol{M}_{1/c^2}rac{\mathrm{d}oldsymbol{p}}{\mathrm{d}t}pproxoldsymbol{M}\left(oldsymbol{M}_{c^2}
ight)^{-1}oldsymbol{M}rac{\mathrm{d}oldsymbol{p}}{\mathrm{d}t}=oldsymbol{A}_holdsymbol{U}.$$

New evaluation reuses implementation for constant wavespeed

$$\frac{\mathrm{d} oldsymbol{p}}{\mathrm{d} t} = \underbrace{oldsymbol{\mathcal{M}}^{-1}(oldsymbol{\mathcal{M}}_{c^2})}_{\mathsf{modified update}} \quad \underbrace{oldsymbol{\mathcal{M}}^{-1}oldsymbol{\mathcal{A}}_{h}oldsymbol{U}}_{\mathsf{constant wavespeed RHS}}$$

Low storage matrix-free application of $M^{-1}M_{c^2}$ using quadrature-based interpolation and L^2 projection matrices V_q , P_q .

$$(\boldsymbol{M})^{-1} \boldsymbol{M}_{c^2} = \underbrace{\boldsymbol{M}^{-1} \boldsymbol{V}_q^T \boldsymbol{W}}_{\boldsymbol{P}_q} \operatorname{diag}(c^2) \boldsymbol{V}_q.$$

Chan, Hewett, Warburton (2017). Weight-adjusted DG methods: wave propagation in heterogeneous media.

Guo (CAAM) November 11, 2020

WADG: nearly identical to DG w/weighted mass matrices

Figure: Standard vs. weight-adjusted DG with spatially varying c^2 .

■ The L^2 error is $O(h^{N+1})$, but the difference between the DG and WADG solutions is $O(h^{N+2})$!

Chan, Hewett, Warburton (2017). Weight-adjusted DG methods: wave propagation in heterogeneous media.

WADG: nearly identical to DG w/weighted mass matrices

Figure: Standard vs. weight-adjusted DG with spatially varying c^2 .

■ The L^2 error is $O(h^{N+1})$, but the difference between the DG and WADG solutions is $O(h^{N+2})$!

 $Chan,\ Hewett,\ Warburton\ (2017).\ Weight-adjusted\ DG\ methods:\ wave\ propagation\ in\ heterogeneous\ media.$

WADG: more efficient than storing M_{1/c^2}^{-1} on GPUs

	N = 1	N = 2	N = 3	N = 4	N = 5	N = 6	N = 7
DG	.66	2.79	9.90	29.4	73.9	170.5	329.4
WADG	0.59	1.44	4.30	13.9	43.0	107.8	227.7
Speedup	1.11	1.94	2.30	2.16	1.72	1.58	1.45

Time (ns) per element: storing/applying M_{1/c^2}^{-1} vs WADG (deg. 2N quadrature).

Efficiency on GPUs: reduce memory accesses and data movement!

WADG: more efficient than storing M_{1/c^2}^{-1} on GPUs

	N = 1	N = 2	N = 3	N = 4	N = 5	N = 6	N = 7
DG	.66	2.79	9.90	29.4	73.9	170.5	329.4
WADG	0.59	1.44	4.30	13.9	43.0	107.8	227.7
Speedup	1.11	1.94	2.30	2.16	1.72	1.58	1.45

Time (ns) per element: storing/applying \mathbf{M}_{1/c^2}^{-1} vs WADG (deg. 2N quadrature).

Efficiency on GPUs: reduce memory accesses and data movement!

Outline

Weight-adjusted DG (WADG): high order heterogeneous media

2 Arbitrary Lagrangian-Eulerian DG: moving meshes

Efficient way to capture domain movement

Figure: Rotating bar: an example of a moving domain

Simulations on moving domains require moving mesh methods.

https://openfoam.org/release/2-3-0/mesh-motion/

Arbitrary Lagrangian-Eulerian (ALE) framework

ALE combines advantages of Lagrangian and Eulerian formulations.

- Eulerian methods: mesh fixed in space
- Lagrangian methods: mesh must be evolved along with ↓ t the solution
- ALE methods: mesh can move arbitrarily

Eulerian description

Arbitrary Lagrangian-Eulerian (ALE) framework

ALE combines advantages of Lagrangian and Eulerian formulations.

- Eulerian methods: mesh fixed in space
- Lagrangian methods: mesh must be evolved along with ★ t the solution
- ALE methods: mesh can move arbitrarily

Lagrangian description

Arbitrary Lagrangian-Eulerian (ALE) framework

ALE combines advantages of Lagrangian and Eulerian formulations.

- Eulerian methods: mesh fixed in space
- Lagrangian methods: mesh must be evolved along with ↓ t the solution
- ALE methods: mesh can move arbitrarily

Arbitrary Lagrangian-Eulerian description

ALE transformation

ALE tranformation:

$$\begin{split} \frac{\partial}{\partial t} &= \frac{\partial}{\partial \tau} + \sum_{j} \frac{\partial \xi_{j}}{\partial t} \frac{\partial}{\partial \xi_{j}}, \\ \frac{\partial}{\partial x_{i}} &= \sum_{j} \frac{\partial \xi_{j}}{\partial x_{i}} \frac{\partial}{\partial \xi_{j}}, \qquad i = 1, 2. \end{split}$$

ALE formulation of a conservation law

Conservation law on the moving physical domain:

$$\frac{d\mathbf{q}}{dt} + \nabla \cdot \mathbf{f} = 0.$$

■ Conservation law on the stationary reference domain:

$$\frac{d\mathbf{qJ}}{d\tau} + \sum_{j} \frac{\partial \xi_{j}}{\partial t} \frac{\partial \mathbf{qJ}}{\partial \xi_{j}} + \sum_{i} \sum_{j} \frac{\partial \xi_{j}}{\partial x_{i}} \frac{\partial \mathbf{Jf}_{i}}{\partial \xi_{j}} = 0.$$

Additional geometric conservation law: $\frac{\partial J}{\partial au} + \widehat{\nabla} \cdot (J\widehat{x}_t) = 0$.

Energy stable skew-symmetric ALE-DG

Constant solution on a moving mesh:

$$\frac{\partial u}{\partial t} = 0.$$

ALE system on a stationary reference mesh:

$$\frac{\partial uJ}{\partial \tau} + \widehat{\nabla} \cdot (uJ\widehat{x}_t) = 0,$$
$$\frac{\partial J}{\partial \tau} + \widehat{\nabla} \cdot (J\widehat{x}_t) = 0.$$

Al E-DG formulation:

Energy stable skew-symmetric ALE-DG

Constant solution on a moving mesh:

$$\frac{\partial u}{\partial t} = 0.$$

ALE system on a stationary reference mesh:

$$\begin{split} \frac{\partial uJ}{\partial \tau} + \widehat{\nabla} \cdot \left(uJ\widehat{x}_t \right) &= 0, \\ \frac{\partial J}{\partial \tau} + \widehat{\nabla} \cdot \left(J\widehat{x}_t \right) &= 0. \end{split}$$

Al E-DG formulation:

Energy stable skew-symmetric ALE-DG

Constant solution on a moving mesh:

$$\frac{\partial u}{\partial t} = 0.$$

ALE system on a stationary reference mesh:

$$\frac{\partial uJ}{\partial \tau} + \widehat{\nabla} \cdot (uJ\widehat{x}_t) = 0,$$
$$\frac{\partial J}{\partial \tau} + \widehat{\nabla} \cdot (J\widehat{x}_t) = 0.$$

ALE-DG formulation:

$$egin{aligned} \left(rac{\partial uJ}{\partial au},v
ight) + \left(\widehat{
abla}\cdot\left(uJ\widehat{x}_t
ight),v
ight) = 0, \\ \left(rac{\partial J}{\partial au},w
ight) + \left(\widehat{
abla}\cdot\left(J\widehat{x}_t
ight),w
ight) = 0. \end{aligned}$$

Constant solution on a moving mesh:

$$\frac{\partial u}{\partial t} = 0.$$

ALE system on a stationary reference mesh:

$$\frac{\partial uJ}{\partial \tau} + \widehat{\nabla} \cdot (uJ\widehat{x}_t) = 0,$$

$$\frac{\partial J}{\partial \tau} + \widehat{\nabla} \cdot (J\widehat{x}_t) = 0.$$

ALE-DG formulation:

$$\left(\frac{\partial uJ}{\partial \tau}, v\right) + \left(\widehat{\nabla} \cdot (uJ\widehat{x}_t), v\right) = 0,$$

$$\left(\frac{\partial J}{\partial \tau}, w\right) + \left(\widehat{\nabla} \cdot (J\widehat{x}_t), w\right) = 0.$$

Skew-symmetric ALE-DG formulation:

$$\left(\frac{\partial uJ}{\partial \tau}, v\right) + \frac{1}{2} \left(\widehat{\nabla} \cdot (J\widehat{x}_t) u, v\right)
+ \frac{1}{2} \left\{ \left(\widehat{\nabla} \cdot (uJ\widehat{x}_t), v\right) + \langle n \cdot u^+, J\widehat{x}_t v \rangle - \left(u, \widehat{\nabla} \cdot (J\widehat{x}_t v)\right) \right\} = 0,
\left(\frac{\partial J}{\partial \tau}, w\right) + \left(\widehat{\nabla} \cdot (J\widehat{x}_t), w\right) = 0.$$

Skew-symmetric term

Skew-symmetric ALE-DG formulation:

$$\begin{split} \left(\frac{\partial uJ}{\partial \tau}, v\right) + \frac{1}{2} \left(\widehat{\nabla} \cdot (J\widehat{x}_{t}) u, v\right) \\ + \frac{1}{2} \left\{ \left(\widehat{\nabla} \cdot (uJ\widehat{x}_{t}), v\right) + \langle n \cdot u^{+}, J\widehat{x}_{t}v \rangle - \left(u, \widehat{\nabla} \cdot (J\widehat{x}_{t}v)\right) \right\} = 0, \\ \left(\frac{\partial J}{\partial \tau}, w\right) + \left(\widehat{\nabla} \cdot (J\widehat{x}_{t}), w\right) = 0. \end{split}$$

Skew-symmetric term:

Skew-symmetric ALE-DG formulation:

$$\begin{split} \left(\frac{\partial uJ}{\partial \tau}, v\right) + \frac{1}{2} \left(\widehat{\nabla} \cdot (J\widehat{x}_{t}) u, v\right) \\ + \frac{1}{2} \left\{ \left(\widehat{\nabla} \cdot (uJ\widehat{x}_{t}), v\right) + \langle n \cdot u^{+}, J\widehat{x}_{t}v \rangle - \left(u, \widehat{\nabla} \cdot (J\widehat{x}_{t}v)\right) \right\} = 0, \\ \left(\frac{\partial J}{\partial \tau}, w\right) + \left(\widehat{\nabla} \cdot (J\widehat{x}_{t}), w\right) = 0. \end{split}$$

Skew-symmetric term:

$$S\left(u,v\right) = \sum \frac{1}{2} \left\{ \left(\widehat{\nabla} \cdot \left(uJ\widehat{x}_{t}\right),v\right) + \left\langle n \cdot u^{+},J\widehat{x}_{t}v\right\rangle - \left(u,\widehat{\nabla} \cdot \left(J\widehat{x}_{t}v\right)\right) \right\}$$

Skew-symmetric ALE-DG formulation:

$$\begin{split} \left(\frac{\partial uJ}{\partial \tau}, v\right) + \frac{1}{2} \left(\widehat{\nabla} \cdot (J\widehat{x}_{t}) u, v\right) \\ + \frac{1}{2} \left\{ \left(\widehat{\nabla} \cdot (uJ\widehat{x}_{t}), v\right) + \langle n \cdot u^{+}, J\widehat{x}_{t}v \rangle - \left(u, \widehat{\nabla} \cdot (J\widehat{x}_{t}v)\right) \right\} = 0, \\ \left(\frac{\partial J}{\partial \tau}, w\right) + \left(\widehat{\nabla} \cdot (J\widehat{x}_{t}), w\right) = 0. \end{split}$$

Skew-symmetric term:

$$S\left(u, \underline{u}\right) = \sum \frac{1}{2} \Big\{ \Big(\widehat{\nabla} \cdot \left(u J \widehat{x}_{t} \right), \underline{u} \Big) + \langle n \cdot u^{+}, J \widehat{x}_{t} \underline{u} \rangle - \Big(u, \widehat{\nabla} \cdot \left(J \widehat{x}_{t} \underline{u} \right) \Big) \Big\}$$

■ In DG methods, solution u is related to uJ through:

$$(u, vJ) = (uJ, v) \iff \mathbf{M}_J u = \mathbf{M}(uJ) \iff u = \mathbf{M}_J^{-1} \mathbf{M}(uJ)$$

Summing over elements:

L² projection preserves polynomial moments

$$\sum \frac{1}{2} \left(\frac{\partial J}{\partial \tau}, u^2 \right) + \sum \frac{1}{2} \left(\widehat{\nabla} \cdot (J \widehat{x}_t), u^2 \right) = 0$$

Subtracting these two equations gives

■ In DG methods, solution u is related to uJ through:

$$(u, vJ) = (uJ, v) \iff \mathbf{M}_J u = \mathbf{M}(uJ) \iff u = \mathbf{M}_J^{-1} \mathbf{M}(uJ)$$

Summing over elements:

$$\sum \left(\frac{\partial uJ}{\partial \tau}, v\right) + \sum \frac{1}{2} \left(\widehat{\nabla} \cdot (J\widehat{x}_t) u, v\right) + \frac{S(u, v)}{2} = 0,$$

$$\sum \left(\frac{\partial J}{\partial \tau}, w\right) + \sum \left(\widehat{\nabla} \cdot (J\widehat{x}_t), w\right) = 0.$$

 \blacksquare L^2 projection preserves polynomial moments

$$\sum \frac{1}{2} \left(\frac{\partial J}{\partial \tau}, u^2 \right) + \sum \frac{1}{2} \left(\widehat{\nabla} \cdot (J \widehat{x}_t), u^2 \right) = 0.$$

Subtracting these two equations gives

■ In DG methods, solution u is related to uJ through:

$$(u, vJ) = (uJ, v) \iff \mathbf{M}_J u = \mathbf{M}(uJ) \iff u = \mathbf{M}_J^{-1} \mathbf{M}(uJ)$$

Summing over elements:

$$\begin{split} & \sum \left(\frac{\partial uJ}{\partial \tau}, \frac{u}{u}\right) + \sum \frac{1}{2} \left(\widehat{\nabla} \cdot \left(J\widehat{x}_{t}\right) u, \frac{u}{u}\right) + \frac{S\left(u, u\right)}{2} = 0, \\ & \sum \left(\frac{\partial J}{\partial \tau}, \frac{1}{2} \Pi_{N}\left(u^{2}\right)\right) + \sum \left(\widehat{\nabla} \cdot \left(J\widehat{x}_{t}\right), \frac{1}{2} \Pi_{N}\left(u^{2}\right)\right) = 0. \end{split}$$

L² projection preserves polynomial moments:

$$\sum \frac{1}{2} \left(\frac{\partial J}{\partial \tau}, u^2 \right) + \sum \frac{1}{2} \left(\widehat{\nabla} \cdot \left(J \widehat{x}_t \right), u^2 \right) = 0.$$

Subtracting these two equations gives

■ In DG methods, solution u is related to uJ through:

$$(u, vJ) = (uJ, v) \iff \mathbf{M}_J u = \mathbf{M}(uJ) \iff u = \mathbf{M}_J^{-1} \mathbf{M}(uJ)$$

Summing over elements:

$$\sum \left(\frac{\partial uJ}{\partial \tau}, u\right) + \sum \frac{1}{2} \left(\widehat{\nabla} \cdot (J\widehat{x}_t) u, u\right) = 0,$$

$$\sum \frac{1}{2} \left(\frac{\partial J}{\partial \tau}, \Pi_N \left(u^2\right)\right) + \sum \frac{1}{2} \left(\widehat{\nabla} \cdot (J\widehat{x}_t), \Pi_N \left(u^2\right)\right) = 0.$$

 \blacksquare L^2 projection preserves polynomial moments:

$$\sum \frac{1}{2} \left(\frac{\partial J}{\partial \tau}, u^2 \right) + \sum \frac{1}{2} \left(\widehat{\nabla} \cdot (J \widehat{x}_t), u^2 \right) = 0.$$

Subtracting these two equations gives

 $\frac{1}{2}\frac{\partial}{\partial \tau}||u||_J^2 = \frac{1}{2}\frac{d}{d\tau}\int_{\Omega}u^2J = 0.$

■ In DG methods, solution u is related to uJ through:

$$(u, vJ) = (uJ, v) \iff \mathbf{M}_J u = \mathbf{M}(uJ) \iff u = \mathbf{M}_J^{-1} \mathbf{M}(uJ)$$

Summing over elements:

$$\sum \left(\frac{\partial uJ}{\partial \tau}, u\right) + \sum \frac{1}{2} \left(\widehat{\nabla} \cdot (J\widehat{x}_t) u, u\right) = 0,$$

$$\sum \frac{1}{2} \left(\frac{\partial J}{\partial \tau}, \Pi_N \left(u^2\right)\right) + \sum \frac{1}{2} \left(\widehat{\nabla} \cdot (J\widehat{x}_t), \Pi_N \left(u^2\right)\right) = 0.$$

■ L^2 projection preserves polynomial moments:

$$\sum \frac{1}{2} \left(\frac{\partial J}{\partial \tau}, \mathbf{u^2} \right) + \sum \frac{1}{2} \left(\widehat{\nabla} \cdot \left(J \widehat{x}_t \right), \mathbf{u^2} \right) = 0.$$

Subtracting these two equations gives

 $2\partial au^n = 2d au J_{\Omega_h}$

In DG methods, solution u is related to uJ through:

$$(u, vJ) = (uJ, v) \iff \mathbf{M}_J u = \mathbf{M}(uJ) \iff u = \mathbf{M}_J^{-1} \mathbf{M}(uJ)$$

Summing over elements:

$$\sum \left(\frac{\partial uJ}{\partial \tau}, u\right) + \sum \frac{1}{2} \left(\widehat{\nabla} \cdot (J\widehat{x}_t) u, u\right) = 0,$$

$$\sum \frac{1}{2} \left(\frac{\partial J}{\partial \tau}, \Pi_N \left(u^2\right)\right) + \sum \frac{1}{2} \left(\widehat{\nabla} \cdot (J\widehat{x}_t), \Pi_N \left(u^2\right)\right) = 0.$$

 \blacksquare L^2 projection preserves polynomial moments:

$$\sum \frac{1}{2} \left(\frac{\partial J}{\partial \tau}, \mathbf{u}^2 \right) + \sum \frac{1}{2} \left(\widehat{\nabla} \cdot (J \widehat{x}_t), \mathbf{u}^2 \right) = 0.$$

Subtracting these two equations gives

$$\frac{1}{2}\frac{\partial}{\partial \tau}||u||_J^2 = \frac{1}{2}\frac{d}{d\tau}\int_{\Omega_L} u^2 J = 0.$$

Guo (CAAM) November 11, 2020 17 / 34

In DG methods:

$$u = \mathbf{M}_{I}^{-1}\mathbf{M}(uJ) \iff (u, vJ) = (uJ, v)$$

In WADG methods:

$$u = \mathbf{M}^{-1} \mathbf{M}_{1/J} \mathbf{M}^{-1} \mathbf{M} (uJ) \iff (u, v) = \left(\frac{uJ}{J}, v\right)$$

■ Introduce intermediate variable $\tilde{u} \notin P^{\Lambda}$

$$\tilde{u} = \frac{uJ}{I} \implies u = \Pi_N \tilde{u}.$$

Take

$$v = u, \qquad w = \frac{1}{2} \Pi_N \left(\tilde{u}^2 \right)$$

In DG methods:

$$u = \mathbf{M}_{I}^{-1}\mathbf{M}(uJ) \iff (u, vJ) = (uJ, v)$$

In WADG methods:

$$u = \mathbf{M}^{-1} \mathbf{M}_{1/J} \mathbf{M}^{-1} \mathbf{M} (uJ) \iff (u, v) = \left(\frac{uJ}{J}, v\right)$$

■ Introduce intermediate variable $\tilde{u} \notin P^{\Lambda}$

$$\tilde{u} = \frac{uJ}{I} \implies u = \Pi_N \tilde{u}.$$

Take

$$v = u, \qquad w = \frac{1}{2} \Pi_N \left(\tilde{u}^2 \right)$$

In DG methods:

$$u = \mathbf{M}_{I}^{-1}\mathbf{M}(uJ) \iff (u, vJ) = (uJ, v)$$

In WADG methods:

$$u = \mathbf{M}^{-1} \mathbf{M}_{1/J} \mathbf{M}^{-1} \mathbf{M} (uJ) \iff (u, v) = \left(\frac{uJ}{J}, v\right)$$

■ Introduce intermediate variable $\tilde{u} \notin P^N$

$$\tilde{u} = \frac{uJ}{I} \implies u = \Pi_N \tilde{u}.$$

Take

$$v = u, \qquad w = \frac{1}{2} \Pi_N \left(\tilde{u}^2 \right)$$

18 / 34

Guo (CAAM) November 11, 2020

In DG methods:

$$u = \mathbf{M}_{I}^{-1}\mathbf{M}(uJ) \iff (u, vJ) = (uJ, v)$$

In WADG methods:

$$u = \mathbf{M}^{-1} \mathbf{M}_{1/J} \mathbf{M}^{-1} \mathbf{M} (uJ) \iff (u, v) = \left(\frac{uJ}{J}, v\right)$$

■ Introduce intermediate variable $\tilde{u} \notin P^N$

$$\tilde{u} = \frac{uJ}{I} \implies u = \Pi_N \tilde{u}.$$

Take

$$v = u, \qquad w = \frac{1}{2} \Pi_N \left(\tilde{u}^2 \right)$$

Guo (CAAM) November 11, 2020

18 / 34

Energy conservation

Theorem (Standard DG)

The skew-symmetric ALE-DG formulation using the standard DG method is energy conservative in the sense that

$$\frac{1}{2}\frac{\partial}{\partial \tau}||u||_J^2=0. \implies \left|||u(\cdot,T)||_J^2-||u(\cdot,0)||_J^2\right|=0.$$

Theorem (WADG)

The skew-symmetric ALE-DG formulation using the WADG method has an upper bound for the energy variation given by

$$\left| ||uJ(\cdot,T)||_{1/J}^2 - ||uJ(\cdot,0)||_{1/J}^2 \right| \le Ch^{2N+2},$$

for fixed T and sufficiently regular solution u(x, t).

ALE-DG for wave propagation

ALE system of the acoustic wave equation:

$$\begin{split} \frac{d\boldsymbol{q}J}{d\tau} + \frac{\partial}{\partial \xi_1} \left(A^1 \boldsymbol{q} \right) + \frac{\partial}{\partial \xi_2} \left(A^2 \boldsymbol{q} \right) &= 0, \\ \frac{\partial J}{\partial \tau} + \widehat{\nabla} \cdot \left(J \widehat{x}_t \right) &= 0, \end{split}$$

where

$$A^{1} = \begin{pmatrix} \frac{\partial \xi_{1}}{\partial t} J & \frac{\partial \xi_{1}}{\partial x_{1}} J & \frac{\partial \xi_{1}}{\partial x_{2}} J \\ \frac{\partial \xi_{1}}{\partial x_{1}} J & \frac{\partial \xi_{1}}{\partial t} J & 0 \\ \frac{\partial \xi_{1}}{\partial x_{2}} J & 0 & \frac{\partial \xi_{1}}{\partial t} J \end{pmatrix}, \qquad A^{2} = \begin{pmatrix} \frac{\partial \xi_{2}}{\partial t} J & \frac{\partial \xi_{2}}{\partial x_{1}} J & \frac{\partial \xi_{2}}{\partial x_{2}} J \\ \frac{\partial \xi_{2}}{\partial x_{1}} J & \frac{\partial \xi_{2}}{\partial t} J & 0 \\ \frac{\partial \xi_{2}}{\partial x_{2}} J & 0 & \frac{\partial \xi_{2}}{\partial t} J \end{pmatrix}.$$

ALE-DG for wave propagation

Skew-symmetric ALE-DG formulation:

$$\begin{split} \left(\frac{d\boldsymbol{q}J}{d\tau},\boldsymbol{w}\right) &= -\frac{1}{2}\left(\frac{\partial}{\partial\xi_{1}}\left(\boldsymbol{A}^{1}\boldsymbol{q}\right),\boldsymbol{w}\right) + \frac{1}{2}\left(\boldsymbol{q},\frac{\partial}{\partial\xi_{1}}\left(\boldsymbol{A}^{1}\boldsymbol{w}\right)\right) \\ &- \frac{1}{2}\left(\frac{\partial}{\partial\xi_{2}}\left(\boldsymbol{A}^{2}\boldsymbol{q}\right),\boldsymbol{w}\right) + \frac{1}{2}\left(\boldsymbol{q},\frac{\partial}{\partial\xi_{2}}\left(\boldsymbol{A}^{2}\boldsymbol{w}\right)\right) \\ &- \frac{1}{2}\left(\left(\frac{\partial}{\partial\xi_{1}}\boldsymbol{A}^{1}\right)\boldsymbol{q},\boldsymbol{w}\right) - \frac{1}{2}\left(\left(\frac{\partial}{\partial\xi_{2}}\boldsymbol{A}^{2}\right)\boldsymbol{q},\boldsymbol{w}\right) \\ &- \frac{1}{2}\left\langle\boldsymbol{q}^{*},\boldsymbol{A}_{n}\boldsymbol{w}\right\rangle, \\ &\left(\frac{\partial J}{\partial\tau},\boldsymbol{\theta}\right) = -\left(\widehat{\nabla}\cdot\left(J\widehat{x}_{t}\right),\boldsymbol{\theta}\right). \end{split}$$

where $A_n = A^1 \hat{n}_1 + A^2 \hat{n}_2$ and $\hat{n} = (\hat{n}_1, \hat{n}_2)$ is the reference domain normal.

Dissipative penalty fluxes

■ Motivated by the surface contribution $\langle \boldsymbol{q}^*, A_n \boldsymbol{w} \rangle$

$$\mathbf{q}^* = \mathbf{q}^+ - \tau_q A_n \llbracket \mathbf{q} \rrbracket.$$

When mesh reduces to the stationary case

$$A_n = \begin{pmatrix} J\widehat{x}_t \cdot n & n_1 J & n_2 J \\ n_1 J & J\widehat{x}_t \cdot n & 0 \\ n_2 J & 0 & J\widehat{x}_t \cdot n \end{pmatrix} = \begin{pmatrix} 0 & n_1 & n_2 \\ n_1 & 0 & 0 \\ n_2 & 0 & 0 \end{pmatrix}$$

■ Flux q^* reduces to the standard penalty flux on a fixed domain:

$$p^* = p^+ - \tau_u [\![u]\!] \cdot n, \qquad u^* = u^+ - \tau_p [\![p]\!] n.$$

Theorem (Consistency)

The skew-symmetric ALE-DG formulation with penalty fluxes is consistent for sufficiently regular velocity.

Dissipative penalty fluxes

Theorem (Energy stability using DG methods)

The skew-symmetric ALE-DG formulation with penalty fluxes using DG method is energy stable in the following sense

$$\frac{1}{2}\frac{\partial}{\partial \tau}\left(||p||_J^2+||u||_J^2+||v||_J^2\right)=-\tau_q[\![\boldsymbol{q}]\!]^TA_n^TA_n[\![\boldsymbol{q}]\!]\leq 0.$$

Theorem (Energy stability using WADG methods)

The skew-symmetric ALE-DG formulation with penalty fluxes using WADG method is energy stable up to a term which super-converges to zero in the following sense

$$\frac{1}{2}\frac{\partial}{\partial \tau}\left(||pJ||_{1/J}^2+||uJ||_{1/J}^2+||vJ||_{1/J}^2\right)\leq C_{max}h^{2N+2}-\tau_q[\![\boldsymbol{q}]\!]^TA_n^TA_n[\![\boldsymbol{q}]\!].$$

Constant solutions on a moving mesh

Figure: Energy variation for different orders of approximation

Bound on ΔE for ALE-WADG: $\Delta E \leq Ch^{2N+2}$

Constant solutions on a moving mesh

Figure: Energy variation for different orders of approximation

Bound on ΔE for ALE-WADG: $\Delta E \leq Ch^{2N+2}$

Energy conservation for the wave equation

Figure: Energy variation for different orders of approximation

Bound on ΔE for ALE-WADG: $\Delta E \leq Ch^{2N+2}$

Energy conservation for the wave equation

Figure: Energy variation for different orders of approximation

Dissipative term dominates change in energy

- Bound on ΔE does not hold for less regular solutions.
- We numerically investigate WADG for less regular solutions by considering the wave equation with discontinuous initial conditions.

Figure: Energy variation for different orders of approximation

Guo (CAAM) November 11, 2020

28 / 34

Convergence for the wave equation

Figure: Convergence of L^2 errors for the acoustic wave solution

Gaussian pulse propagates on a moving mesh

(a) Moving mesh

(b) Stationary mesh

Extension to B-spline bases

- WADG using B-spline bases:
 - B-splines form the foundations for isogeometric analysis
 - WADG recovers Kronecker structure for B-spline operators, enables efficient isogeometric analysis using explicit time-stepping

Figure: B-spline bases of different degrees

Energy conservation for the wave equation (B-spline)

Figure: Energy variation for the acoustic wave solution

Convergence for the wave equation (B-spline)

Figure: Convergence of L^2 errors for the acoustic wave solution

Summary and acknowledgements

- We derive an ALE-DG method for wave propagation on moving curved meshes.
- Energy stability up to a term which converges to zero with the same rate as the optimal L^2 error estimate.
- The proposed method can be applied without restrictions on element type, quadrature, or choice of local approximation space.

Thank you! Questions?

34 / 34

Chan, Hewett, Warburton. 2016. WADG methods: wave propagation in heterogeneous media (SISC).

Guo. Chan. 2020. High order WADG methods for wave propagation on moving curved meshes.

Guo (CAAM) November 11, 2020